We investigate and assess the capability of the mesoscopic envelope model of dendritic solidification to represent the growth of columnar dendritic structures. This is done by quantitative comparisons to phase-field simulations in two dimensions. While the phase-field model resolves the detailed growth morphology at the microscale, the mesoscopic envelope model describes a dendritic grain by its envelope. The envelope growth velocities are calculated by an analytical dendrite-tip model and matched to the numerical solution of the solute concentration field in the vicinity of the envelope. The simplified representation of the dendrites drastically reduces the calculation time compared to phase field. Larger ensembles of grains can therefore be simulated. We show that the mesoscopic envelope model accurately reproduces the evolution of the primary branch structure, the undercooling of the dendrite tips, and the solidification path in the columnar mushy zone. We further show that it can also correctly describe the transient adjustments of primary spacing, both by spacing increase due to elimination of primary branches and by spacing reduction due to tertiary rebranching. Elimination and tertiary rebranching are also critical phenomena for the evolution of grain boundaries between columnar grains that have a different crystallographic orientation with respect to the temperature gradient. We show that the mesoscopic model can reproduce the macroscopic evolution of such grain boundaries for small and moderate misorientation angles, i.e., up to 30 •. It is therefore suitable for predicting the texture of polycrystalline columnar structures. We also provide guidelines for the calibration of the main parameters of the mesoscopic model, required to obtain reliable predictions.
Based on 2D phase-field simulations including fluid flow driven by natural convection, columnar dendritic growth of the β-solidifying Ti-48 at%Al alloy is characterised for different gravity levels ranging from 0 to ±15g. Depending on the direction of the gravity g with respect to the growth direction, different flow regimes emerge which show stable or unstable dendritic growth dynamics. When gravity and growth directions are parallel, the dendrite tips experience downward melt flow and individual dendrites grow in a stable manner with a rather small modification of the operating state. When gravity and growth directions are antiparallel, the impact on the operating state is larger. Eventually, at higher gravity levels the upward melt flow around the dendrite tips "destabilises" the dendritic morphology resulting in tip splitting, branching and local changes in the apparent dendrite growth direction which is an alternative mechanism for the adjustment of the primary dendrite arm spacing in addition to tertiary arm formation.
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
We present a quantitative benchmark of multiscale models for dendritic growth simulations. We focus on approaches based on phase-field, dendritic needle network, and grain envelope dynamics. As a first step, we focus on isothermal growth of an equiaxed grain in a supersaturated liquid in three dimensions. A quantitative phase-field formulation for solidification of a dilute binary alloy is used as the reference benchmark. We study the effect of numerical and modeling parameters in both needle-based and envelope-based approaches, in terms of their capacity to quantitatively reproduce phase-field reference results. In light of this benchmark, we discuss the capabilities and limitations of each approach in quantitatively and efficiently predicting transient and steady states of dendritic growth. We identify parameters that yield a good compromise between accuracy and computational efficiency in both needle-based and envelope-based models. We expect that these results will guide further developments and utilization of these models, and ultimately pave the way to a quantitative bridging of the dendrite tip scale with that of entire experiments and solidification processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.