The Spitzer Survey of Stellar Structure in Galaxies (S 4 G) is a volume, magnitude, and size-limited survey of 2352 nearby galaxies with deep imaging at 3.6 and 4.5 µm. In this paper we describe our surface photometry pipeline and showcase the associated data products that we have released to the community. We also identify the physical mechanisms leading to different levels of central stellar mass concentration for galaxies with the same total stellar mass. Finally, we derive the local stellar mass-size relation at 3.6 µm for galaxies of different morphologies. Our radial profiles reach stellar mass surface densities below ∼ 1 M ⊙ pc −2 . Given the negligible impact of dust and the almost constant mass-to-light ratio at these wavelengths, these profiles constitute an accurate inventory of the radial distribution of stellar mass in nearby galaxies. From these profiles we have also derived global properties such as asymptotic magnitudes (and the corresponding stellar masses), isophotal sizes and shapes, and concentration indices. These and other data products from our various pipelines (scienceready mosaics, object masks, 2D image decompositions, and stellar mass maps), can be publicly accessed at IRSA
We present new, spatially resolved, surface photometry in FUV and NUV from images obtained by the Galaxy Evolution Explorer (GALEX), and IRAC1 (3.6 µm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S 4 G) (Sheth et al. 2010). We analyze the radial surface brightness profiles µ F U V , µ N U V , and µ [3.6] , as well as the radial profiles of (FUV − NUV), (NUV − [3.6]), and (FUV − [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 µm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way, and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos (2000). The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two to those obtained via direct kinematic measurements. We find that at a surface brightness fainter than µ [3.6] = 20.89 mag arcsec −2 , or below 3 × 10 8 M kpc −2 in stellar mass surface density, the average specific star formation rate for star forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies (defined in Bouquin et al. 2015) shows a radial decrease in specific star formation rate. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star forming galaxies towards the red sequence of quiescent galaxies.
We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for >2000 galaxies, available for 90% of the S 4 G sample. We find a very tightGALEX blue sequence (GBS) in the (FUV-NUV) versus (NUV-[3.6]) color-color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call theGALEX green valley (GGV). At the red end of the GBS, at (NUV-[3.6]) > 5, we find a widerGALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M [3.6] ) since both massive) blue-and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa's, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 10 8 yr.
Context. Stellar bars are known to gradually funnel gas to the central parts of disk galaxies. It remains a matter of debate why the distribution of ionized gas along bars and in the circumnuclear regions varies among galaxies. Aims. Our goal is to investigate the spatial distribution of star formation (SF) within bars of nearby low-inclination disk galaxies (i < 65°) from the S4G survey. We aim to link the loci of SF to global properties of the hosts (morphological type, stellar mass, gas fraction, and bar-induced gravitational torques), providing constraints for the conditions that regulate SF in bars. Methods. We use archival GALEX far- and near-UV imaging for 772 barred galaxies, and for a control sample of 423 non-barred galaxies. We also assemble a compilation of continuum-subtracted Hα images for 433 barred galaxies, 70 of which we produced from ancillary photometry and MUSE and CALIFA integral field unit data cubes. We employ two complementary approaches: (i) the analysis of bar (2D) and disk (1D) stacks built from co-added UV images (oriented and scaled with respect to the stellar bars and the extent of disks) of hundreds of galaxies that are binned based on their Hubble stage (T) and bar family; and (ii) the visual classification of the morphology of ionized regions (traced from Hα and UV data) in individual galaxies into three main SF classes: (A) only circumnuclear SF; (B) SF at the bar ends, but not along the bar; and (C) SF along the bar. Barred galaxies with active and passive inner rings are likewise classified. Results. Massive, gas-poor, lenticular galaxies typically belong to SF class A; this is probably related to bar-induced quenching of SF in the disk. The distribution of SF class B peaks for early- and intermediate-type spirals; this most likely results from the interplay of gas flow, shocks, and enhanced shear in massive centrally concentrated galaxies with large bar amplitudes (the latter is supported by the lack of a dip in the radial distribution of SF in non-barred galaxies). Late-type gas-rich galaxies with high gravitational torques are mainly assigned to SF class C; we argue that this is a consequence of low shear among the faintest galaxies. In bar stacks of spiral galaxies the UV emission traces the stellar bars and dominates on their leading side, as witnessed in simulations. Among early-type spirals the central UV emission is ∼0.5 mag brighter in strongly barred galaxies, relative to their weakly barred counterparts; this is probably related to the efficiency of strong bars sweeping the disk gas and triggering central starbursts. On the contrary, in later types the UV emission is stronger at all radii in strongly barred galaxies than in weakly barred and non-barred ones. We also show that the distributions of SF in inner-ringed galaxies are broadly the same in barred and non-barred galaxies, including a UV and Hα deficit in the middle part of the bar; this hints at the effect of resonance rings trapping gas that is no longer funneled inwards. Conclusions. Distinct distributions of SF within bars are reported in galaxies of different morphological types. Star-forming bars are most common among late-type gas-rich galaxies. Bars are important agents in the regulation of SF in disks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.