Let G be a finite simple group of Lie type, and let πG be the permutation representation of G associated with the action of G on itself by conjugation. We prove that every irreducible complex representation of G is a constituent of πG, unless G=PSUn(q) and n⩾3 is coprime to 2(q+1), where precisely one irreducible representation fails. We also prove that every irreducible representation of G is a constituent of the tensor square St ⊗ St of the Steinberg representation St of G, with the same exceptions as in the previous statement.
We study (connected) reductive subgroups G of a reductive algebraic group H, where G contains a regular unipotent element of H. The main result states that G cannot lie in a proper parabolic subgroup of H. This result is new even in the classical case H = SL(n, F), the special linear group over an algebraically closed field, where a regular unipotent element is one whose Jordan normal form consists of a single block. In previous work, Saxl and Seitz (1997) determined the maximal closed positive-dimensional (not necessarily connected) subgroups of simple algebraic groups containing regular unipotent elements. Combining their work with our main result, we classify all reductive subgroups of a simple algebraic group H which contain a regular unipotent element.
We prove that any simple Lie subalgebra of a locally finite associative algebra is either finitedimensional or isomorphic to the commutator algebra of the Lie algebra of skew symmetric elements of some involution simple locally finite associative algebra. The ground field is assumed to be algebraically closed of characteristic 0. This result can be viewed as a classification theorem for simple Lie algebras that can be embedded in locally finite associative algebras. We also establish a link between this class of Lie algebras and that of Lie algebras graded by finite root systems. 2004 Elsevier Inc. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.