Background: Motion capture systems are widely used to quantify human gait. Two-dimensional (2D) video systems are simple to use, easily accessible, and affordable. However, their performance as compared to other systems (i.e. three-dimensional (3D) gait analysis) is not well established. Objectives: This work provides a comprehensive review of design specifications and performance characteristics (validity and reliability) of two-dimensional motion capture systems. Study design: Systematic review. Methods: A systematic literature search was conducted in three databases from 1990 to 2019 and identified 30 research articles that met the inclusion/exclusion criteria. Results: Reliability of measurements of two-dimensional video motion capture was found to vary greatly from poor to excellent. Results relating to validity were also highly variable. Comparisons between the studies were challenging due to differences in protocols, instrumentation, parameters assessed, and analyses performed. Conclusions: Variability in performance could be attributed to study design, gait parameters being measured, and technical aspects. The latter includes camera specifications (i.e. resolution and frame rate), setup (i.e. camera position), and analysis software. Given the variability in performance, additional validation testing may be needed for specific applications involving clinical or research-based assessments, including specific patient populations, gait parameters, mobility tasks, and data collection protocols. Clinical relevance This review article provides guidance on the application of 2D video gait analysis in a clinical or research setting. While not suitable in all instances, 2D gait analysis has promise in specific applications. Recommendations are provided about the patient populations, gait parameters, mobility tasks, and data collection protocols.
Individuals with lower-limb amputation often have gait deficits and diminished mobility function. Biofeedback systems have the potential to improve gait rehabilitation outcomes. Research on biofeedback has steadily increased in recent decades, representing the growing interest toward this topic. This systematic review highlights the methodological designs, main technical and clinical challenges, and evidence relating to the effectiveness of biofeedback systems for gait rehabilitation. This review provides insights for developing an effective, robust, and user-friendly wearable biofeedback system. The literature search was conducted on six databases and 31 full-text articles were included in this review. Most studies found biofeedback to be effective in improving gait. Biofeedback was most commonly concurrently provided and related to limb loading and symmetry ratios for stance or step time. Visual feedback was the most used modality, followed by auditory and haptic. Biofeedback must not be obtrusive and ideally provide a level of enjoyment to the user. Biofeedback appears to be most effective during the early stages of rehabilitation but presents some usability challenges when applied to the elderly. More research is needed on younger populations and higher amputation levels, understanding retention as well as the relationship between training intensity and performance.
BACKGROUND: Biofeedback (BFB), the practice of providing real-time sensory feedback has been shown to improve gait rehabilitation outcomes. BFB training through rhythmic stimulation has the potential to improve spatiotemporal gait asymmetries while minimizing cognitive load by encouraging a synchronization between the user’s gait cycle and an external rhythm. OBJECTIVE: The purpose of this work was to evaluate if rhythmic stimulation can improve the stance time symmetry ratio (STSR) and to compare vibrotactile to auditory stimulation. Gait parameters including velocity, cadence, stride length, double support time, and step length symmetry, were also examined. METHODOLOGY: An experimental rhythmic stimulation system was developed, and twelve healthy adults (5 males), age 28.42 ± 10.93 years, were recruited to participate in walking trials. A unilateral ankle weight was used to induce a gait asymmetry to simulate asymmetry as commonly exhibited by individuals with lower limb amputation and other clinical disorders. Four conditions were evaluated: 1) No ankle weight baseline, 2) ankle weight without rhythmic stimulation, 3) ankle weight + rhythmic vibrotactile stimulation (RVS) using alternating motors and 4) ankle weight + rhythmic auditory stimulation (RAS) using a single-tone metronome at the participant’s self-selected cadence. FINDINGS: As expected the STSR became significantly more asymmetrical with the ankle weight (i.e. induced asymmetry condition). STSR improved significantly with RVS and RAS when compared to the ankle weight without rhythmic stimulation. Cadence also significantly improved with RVS and RAS compared to ankle weight without rhythmic stimulation. With the exception of double support time, the other gait parameters were unchanged from the ankle weight condition. There were no statistically significant differences between RVS and RAS. CONCLUSION: This study found that rhythmic stimulation can improve the STSR when an asymmetry is induced. Moreover, RVS is at least as effective as auditory stimulation in improving STSR in healthy adults with an induced gait asymmetry. Future work should be extended to populations with mobility impairments and outside of laboratory settings. Layman's Abstract Providing feedback to users in real-time has been shown to improve walking in many populations with gait deviations. Feedback in the form of rhythmic stimulation involves consistent cues to which the user matches their movement. This work compared the effects of sound-based (RAS) and vibration-based (RVS) stimulation systems on the walking symmetry of healthy adults. A simple stimulation system was used with twelve healthy adults in walking trials. The walking trials included some in which the participant wore an ankle weight on a single leg to create a non-symmetrical walking pattern. Four different conditions were tested: No ankle weight, with an ankle weight, with an ankle weight and RAS, and with an ankle weight and RVS. Walking symmetry improved with both RVS and RAS compared to ankle weight only. Walking speed, cadence, and step length did not change. These findings show that RVS is at least as effective as RAS and may be a useful technique for gait rehabilitation. Future work should involve clinical populations and in real-world settings. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/36223/29090 How To Cite: Michelini A., Sivasambu H., Andrysek J. The short-term effects of rhythmic vibrotactile and auditory biofeedback on the gait of individuals after weight-induced asymmetry. Canadian Prosthetics & Orthotics Journal. 2022; Volume 5, Issue 1, No.6. https://doi.org/10.33137/cpoj.v5i1.36223 Corresponding Author: Jan Andrysek, PhDBloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,E-Mail: jandrysek@hollandbloorview.ca ORCID ID: https://orcid.org/0000-0002-4976-1228
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.