The type 2 family of taste receptors (T2Rs) detect and respond to bitter tastants. These receptors are expressed throughout the gastrointestinal (GI) tract, with location dependant roles. In the oral cavity, T2Rs are involved in the conscious perception of bitter tastants, while in the lower GI tract they have roles in chemoreception and regulation of GI function. Through these diverse roles, these receptors may be involved in modulating appetite and diet, with consequences for weight regulation and obesity. Interestingly, the concentration of T2Rs in the GI tract is greatest in the large intestine, the organ with the densest colonisation of bacteria. The gut microbiome has been the subject of intense research, as a plethora of roles linking microbiota to human health continue to be uncovered. Of particular interest is the microbial signature associated with obesity. Obesity is a leading health concern, and advances in our understanding of this disease are needed. Diet is a known modifiable factor in the development of obesity. However, diet only partially explains disease risk. Changes in microbial energy harvesting by the microbiota plays a role in obesity, and the composition of these energy harvesting populations may be controlled by taste receptors. This review explores T2Rs as a potential link between obesity and the human GI microbiome.
Background: Deafness in dogs is frequently associated with the pigment genes piebald and merle. Little is known about the prevalence of deafness in dogs carrying the merle allele.Objective: To determine the prevalence of deafness in dogs heterozygous and homozygous for the merle allele of the mouse Silver pigment locus homolog (SILV) gene.Animals: One hundred and fifty-three privately owned merle dogs of different breeds and both sexes. Methods: Hearing was tested by brainstem auditory-evoked response and classified as bilaterally hearing, unilaterally deaf, or bilaterally deaf. DNA from buccal cells was genotyped as either heterozygous or homozygous for the merle allele. Deafness association tests among merle genotype, eye color, and sex were performed by the w 2 test. Results: Deafness prevalence in merles overall was 4.6% unilaterally deaf and 4.6% bilaterally deaf. There was a significant association between hearing status and heterozygous versus homozygous merle genotype. For single merles (Mm), 2.7% were unilaterally deaf and 0.9% were bilaterally deaf. For double merles (MM), 10% were unilaterally deaf and 15% were bilaterally deaf. There was no significant association with eye color or sex.Conclusions: Deafness prevalence in merle dogs was greater than that in some dog breeds homozygous for the piebald gene, such as the English Cocker Spaniel, but comparable to, or lower than, that in the Dalmatian and white Bull Terrier. Dogs homozygous for the merle allele were significantly more likely to be deaf than heterozygotes.
Intense sweeteners (IS) are often marketed as a healthier alternative to sugars, with the potential to aid in combating the worldwide rise of diabetes and obesity. However, their use has been counterintuitively associated with impaired glucose homeostasis, weight gain and altered gut microbiota. The nature of these associations, and the mechanisms responsible, are yet to be fully elucidated. Differences in their interaction with taste receptors may be a potential explanatory factor. Like sugars, IS stimulate sweet taste receptors, but due to their diverse structures, some are also able to stimulate bitter taste receptors. These receptors are expressed in the oral cavity and extra-orally, including throughout the gastrointestinal tract. They are involved in the modulation of appetite, glucose homeostasis and gut motility. Therefore, taste genotypes resulting in functional receptor changes and altered receptor expression levels may be associated with metabolic conditions. IS and taste receptors may both interact with the gastrointestinal microbiome, and their interactions may potentially explain the relationship between IS use, obesity and metabolic outcomes. While these elements are often studied in isolation, the potential interactions remain unexplored. Here, the current evidence of the relationship between IS use, obesity and metabolic outcomes is presented, and the potential roles for interactions with taste receptors and the gastrointestinal microbiota in modulating these relationships are explored.
Differences in sour-taste thresholds have been identified in cognition-related diseases. Diet is a modulator of cognitive health, and taste perception influences dietary preferences and habits. Heritable genetics and polymorphisms in the KCNJ2 gene involved in the transduction of sour taste have been linked to variations in sour taste and non-gustatory functions. However, relationships between sour taste genetics, mild cognitive impairment, and diet quality are yet to be elucidated. This study investigated the associations between the presence of the KCNJ2-rs236514 variant (A) allele, diet quality indices, and mild cognitive impairment evaluated by the Mini-Mental State Examination (MMSE), in a secondary cross-sectional analysis of data from the Retirement Health & Lifestyle Study. Data from 524 elderly Australians (≥65y) were analyzed, using standard least squares regression and nominal logistic regression modeling, with demographic adjustments applied. Results showed that the presence of the KCNJ2-A allele is associated with increased proportions of participants scoring in the range indicative of mild or more severe cognitive impairment (MMSE score of ≤26) in the total cohort, and males. These associations remained statistically significant after adjusting for age, sex, and diet quality indices. The absence of association between the KCNJ2-A allele and cognitive impairment in women may be related to their higher diet quality scores in all indices. The potential link between sour taste genotype and cognitive impairment scores may be due to both oral and extra-oral functions of sour taste receptors. Further studies are required on the role and relationship of neurotransmitters, sour taste genotypes and sour taste receptors in the brain, and dietary implications, to identify potential risk groups or avenues for therapeutic or prophylactic interventions.
A small amount of emerging research has observed variations between individual sensitivity, preference and intake of salt in the presence of single nucleotide polymorphisms (SNP) on the genes encoding salt taste receptors. Sodium intake is a significant risk factor for common diseases in elderly populations such as hypertension and cardiovascular disease; however, this does not fully explain the risk. Research into the influence of salt taste genetics on diet quality is yet to be undertaken and current research on indicators of health is limited and mixed in the direction of associations. Therefore, a secondary analysis of data from a well-characterised elderly cohort (the cross-sectional Retirement Health and Lifestyle Study, n = 536) was conducted to explore relationships between the salt taste-related SNP TRPV1-rs8065080 (assessed by Taqman genotyping assay), dietary habits and biomarkers of health. Data were analysed with standard least squares regression modelling and Tukey’s HSD post hoc tests. No association was found between the TRPV1-rs8065080 genotype, sodium intake or multiple diet quality indices (assessed by food frequency questionnaire). Sodium-related markers of health including blood pressure and markers of kidney function (urinary creatinine and albumin/creatinine ratio) and general health markers, such as Body Mass Index (BMI), were also not related to TRPV1-rs8065080 genotype. To date, this study is the most comprehensive investigation conducted to determine if the TRPV1-rs8065080 genotype relates to sodium intake and health markers influenced by sodium intake. Although no significant relationships were found, these findings are an important contribution to the limited body of knowledge surround this SNP. In addition to further research across other ages and cultures, the TRPV1-rs8065080 genotype may interact with other ion channels, and so further studies are required to determine if polymorphic variations influence sodium intake, diet and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.