It is a general truth that increase of age is associated with a level of mental and physical decline but unfortunately the former are often accompanied by social exclusion leading to marginalization and eventually further acceleration of the aging process. A new approach in alleviating the social exclusion of older people involves the use of assistive robots. As robots rapidly invade everyday life, the need of new software paradigms in order to address the user's unique needs becomes critical. In this paper we present a novel architectural design, the RAPP [a software platform to deliver smart, user empowering robotic applications (RApps)] framework that attempts to address this issue. The proposed framework has been designed in a cloud-based approach, integrating robotic devices and their respective applications. We aim to facilitate seamless development of RApps compatible with a wide range of supported robots and available to the public through a unified online store.
As machine learning (ML) and artificial intelligence progress, more complex tasks can be addressed, quite often by cascading or combining existing models and technologies, known as the bottom‐up design. Some of those tasks are addressed by agents, which attempt to simulate or emulate higher cognitive abilities that cover a broad range of functions; hence, those agents are named cognitive agents. We formulate, implement, and evaluate such a cognitive agent, which combines learning by example with ML. The mechanisms, algorithms, and theories to be merged when training a cognitive agent to read and learn how to represent knowledge have not, to the best of our knowledge, been defined by the current state‐of‐the‐art research. The task of learning to represent knowledge is known as semantic parsing, and we demonstrate that it is an ability that may be attained by cognitive agents using ML, and the knowledge acquired can be represented by using conceptual graphs. By doing so, we create a cognitive agent that simulates properties of “learning by example,” while performing semantic parsing with good accuracy. Due to the unique and unconventional design of this agent, we first present the model and then gauge its performance, showcasing its strengths and weaknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.