This paper presents a new video summarization approach that integrates an attention mechanism to identify the significant parts of the video, and is trained unsupervisingly via generative adversarial learning. Starting from the SUM-GAN model, we first develop an improved version of it (called SUM-GAN-sl) that has a significantly reduced number of learned parameters, performs incremental training of the model's components, and applies a stepwise label-based strategy for updating the adversarial part. Subsequently, we introduce an attention mechanism to SUM-GAN-sl in two ways: i) by integrating an attention layer within the variational auto-encoder (VAE) of the architecture (SUM-GAN-VAAE), and ii) by replacing the VAE with a deterministic attention auto-encoder (SUM-GAN-AAE). Experimental evaluation on two datasets (SumMe and TVSum) documents the contribution of the attention auto-encoder to faster and more stable training of the model, resulting in a significant performance improvement with respect to the original model and demonstrating the competitiveness of the proposed SUM-GAN-AAE against the state of the art.
In this paper we present our work on improving the efficiency of adversarial training for unsupervised video summarization. Our starting point is the SUM-GAN model, which creates a representative summary based on the intuition that such a summary should make it possible to reconstruct a video that is indistinguishable from the original one. We build on a publicly available implementation of a variation of this model, that includes a linear compression layer to reduce the number of learned parameters and applies an incremental approach for training the different components of the architecture. After assessing the impact of these changes to the model's performance, we propose a stepwise, label-based learning process to improve the training efficiency of the adversarial part of the model. Before evaluating our model's efficiency, we perform a thorough study with respect to the used evaluation protocols and we examine the possible performance on two benchmarking datasets, namely SumMe and TVSum. Experimental evaluations and comparisons with the state of the art highlight the competitiveness of the proposed method. An ablation study indicates the benefit of each applied change on the model's performance, and points out the advantageous role of the introduced stepwise, labelbased training strategy on the learning efficiency of the adversarial part of the architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.