The web has become an essential part of our society and is currently the main medium of information delivery. Billions of users browse the web on a daily basis, and there are single websites that have reached over one billion user accounts. In this environment, the ability to track users and their online habits can be very lucrative for advertising companies, yet very intrusive for the privacy of users.In this paper, we examine how web-based device fingerprinting currently works on the Internet. By analyzing the code of three popular browser-fingerprinting code providers, we reveal the techniques that allow websites to track users without the need of client-side identifiers. Among these techniques, we show how current commercial fingerprinting approaches use questionable practices, such as the circumvention of HTTP proxies to discover a user's real IP address and the installation of intrusive browser plugins.At the same time, we show how fragile the browser ecosystem is against fingerprinting through the use of novel browseridentifying techniques. With so many different vendors involved in browser development, we demonstrate how one can use diversions in the browsers' implementation to distinguish successfully not only the browser-family, but also specific major and minor versions. Browser extensions that help users spoof the user-agent of their browsers are also evaluated. We show that current commercial approaches can bypass the extensions, and, in addition, take advantage of their shortcomings by using them as additional fingerprinting features.
Today, web injection manifests in many forms, but fundamentally occurs when malicious and unwanted actors tamper directly with browser sessions for their own profit. In this work we illuminate the scope and negative impact of one of these forms, ad injection, in which users have ads imposed on them in addition to, or different from, those that websites originally sent them. We develop a multi-staged pipeline that identifies ad injection in the wild and captures its distribution and revenue chains. We find that ad injection has entrenched itself as a cross-browser monetization platform impacting more than 5% of unique daily IP addresses accessing Google-tens of millions of users around the globe. Injected ads arrive on a client's machine through multiple vectors: our measurements identify 50,870 Chrome extensions and 34,407 Windows binaries, 38% and 17% of which are explicitly malicious. A small number of software developers support the vast majority of these injectors who in turn syndicate from the larger ad ecosystem. We have contacted the Chrome Web Store and the advertisers targeted by ad injectors to alert each of the deceptive practices involved.
JavaScript is used by web developers to enhance the interactivity of their sites, offload work to the users' browsers and improve their sites' responsiveness and user-friendliness, making web pages feel and behave like traditional desktop applications. An important feature of JavaScript, is the ability to combine multiple libraries from local and remote sources into the same page, under the same namespace. While this enables the creation of more advanced web applications, it also allows for a malicious JavaScript provider to steal data from other scripts and from the page itself. Today, when developers include remote JavaScript libraries, they trust that the remote providers will not abuse the power bestowed upon them.In this paper, we report on a large-scale crawl of more than three million pages of the top 10,000 Alexa sites, and identify the trust relationships of these sites with their library providers. We show the evolution of JavaScript inclusions over time and develop a set of metrics in order to assess the maintenance-quality of each JavaScript provider, showing that in some cases, top Internet sites trust remote providers that could be successfully compromised by determined attackers and subsequently serve malicious JavaScript. In this process, we identify four, previously unknown, types of vulnerabilities that attackers could use to attack popular web sites. Lastly, we review some proposed ways of protecting a web application from malicious remote scripts and show that some of them may not be as effective as previously thought.
Abstract. The drive-by download scene has changed dramatically in the last few years. What was a disorganized ad-hoc generation of malicious pages by individuals has evolved into sophisticated, easily extensible frameworks that incorporate multiple exploits at the same time and are highly configurable. We are now dealing with exploit kits. In this paper we focus on the server-side part of drive-by downloads by automatically analyzing the source code of multiple exploit kits. We discover through static analysis what checks exploit-kit authors perform on the server to decide which exploit is served to which client and we automatically generate the configurations to extract all possible exploits from every exploit kit. We also examine the source code of exploit kits and look for interesting coding practices, their detection mitigation techniques, the similarities between them and the rise of Exploit-as-a-Service through a highly customizable design. Our results indicate that even with a perfect drive-by download analyzer it is not trivial to trigger the expected behavior from an exploit kit so that it is classified appropriately as malicious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.