Summary
The first superconvergent hybridisable discontinuous Galerkin method for linear elastic problems capable of using the same degree of approximation for both the primal and mixed variables is presented. The key feature of the method is the strong imposition of the symmetry of the stress tensor by means of the well known and extensively used Voigt notation, circumventing the use of complex mathematical concepts to enforce the symmetry of the stress tensor either weakly or strongly. A novel procedure to construct element by element a superconvergent postprocessed displacement is proposed. Contrary to other hybridisable discontinuous Galerkin formulations, the methodology proposed here is able to produce a superconvergent displacement field for low‐order approximations. The resulting method is robust and locking‐free in the nearly incompressible limit. An extensive set of numerical examples is utilised to provide evidence of the optimality of the method and its superconvergent properties in two and three dimensions and for different element types.
This work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element post-process procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational 1 arXiv:1802.09394v1 [math.NA] 26 Feb 2018 efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.