Despite multiple research approaches to prevent bacterial colonization on surfaces, device‐associated infections are currently responsible for about 50% of nosocomial infections in Europe and significantly increase health care costs, which demands development of advanced antibacterial surface coatings. Here, novel antimicrobial composite materials incorporating zinc oxide nanoparticles (ZnO NP) into biocompatible poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel layers are prepared by mixing the PNIPAAm prepolymer with ZnO NP, followed by spin‐coating and photocrosslinking. Scanning electron microscopy (SEM) characterization of the composite film morphology reveals a homogeneous distribution of the ZnO NP throughout the film for every applied NP/polymer ratio. The optical properties of the embedded NP are not affected by the matrix as confirmed by UV‐vis spectroscopy. The nanocomposite films exhibit bactericidal behavior towards Escherichia coli (E. coli) for a ZnO concentration as low as ≈0.74 μg cm−2 (1.33 mmol cm−3), which is determined by inductively coupled plasma optical emission spectrometry. In contrast, the coatings are found to be non‐cytotoxic towards a mammalian cell line (NIH/3T3) at bactericidal loadings of ZnO over an extended period of seven days. The differential toxicity of the ZnO/hydrogel nanocomposite thin films between bacterial and cellular species qualifies them as promising candidates for novel biomedical device coatings.
The magnetic and crystal structures of the alpha-NaMnO2 have been determined by high-resolution neutron powder diffraction. The system maps out a frustrated triangular spin lattice with anisotropic interactions that displays two-dimensional spin correlations below 200 K. Magnetic frustration is lifted through magneto-elastic coupling, evidenced by strong anisotropic broadening of the diffraction profiles at high temperature and ultimately by a structural phase transition at 45 K. In this low-temperature regime a three-dimensional antiferromagnetic state is observed with a propagation vector k=(1/2,1/2,0).
Controlled assembly of single-crystal, colloidal maghemite nanoparticles is facilitated via a high-temperature polyol-based pathway. Structural characterization shows that size-tunable nanoclusters of 50 and 86 nm diameters (D), with high dispersibility in aqueous media, are composed of ~13 nm (d) crystallographically oriented nanoparticles. The interaction effects are examined against the increasing volume fraction, φ, of the inorganic magnetic phase that goes from individual colloidal nanoparticles (φ= 0.47) to clusters (φ= 0.72). The frozen-liquid dispersions of the latter exhibit weak ferrimagnetic behavior at 300 K. Comparative Mössbauer spectroscopic studies imply that intra-cluster interactions come into play. A new insight emerges from the clusters' temperature-dependent ac susceptibility that displays two maxima in χ''(T), with strong frequency dispersion. Scaling-law analysis, together with the observed memory effects suggest that a superspin glass state settles-in at T B~ 160-200 K, while at lowertemperatures, surface spin-glass freezing is established at T f~ 40-70 K. In such nanoparticleassembled systems, with increased φ, Monte Carlo simulations corroborate the role of the inter-particle dipolar interactions and that of the constituent nanoparticles' surface spin disorder in the emerging spin-glass dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.