This work introduces Focused-Variation Network (FVN), a novel model to control language generation. The main problems in previous controlled language generation models range from the difficulty of generating text according to the given attributes, to the lack of diversity of the generated texts. FVN addresses these issues by learning disjoint discrete latent spaces for each attribute inside codebooks, which allows for both controllability and diversity, while at the same time generating fluent text. We evaluate FVN on two text generation datasets with annotated content and style, and show state-of-the-art performance as assessed by automatic and human evaluations.
Different flavors of transfer learning have shown tremendous impact in advancing research and applications of machine learning. In this work we study the use of a certain family of transfer learning, where the target domain is mapped to the source domain. Specifically we map Natural Language Understanding (NLU) problems to Question Answering (QA) problems and we show that in low data regimes this approach offers significant improvements compared to other approaches to NLU. Moreover, we show that these gains could be increased through sequential transfer learning across NLU problems from different domains. We show that our approach could reduce the amount of required data for the same performance by up to a factor of 10.
The quality of automatic speech recognition (ASR) is critical to Dialogue Systems as ASR errors propagate to and directly impact downstream tasks such as language understanding (LU). In this paper, we propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with LU to improve the performance of both tasks simultaneously. To measure the effectiveness of this approach we used a public benchmark, the 2nd Dialogue State Tracking (DSTC2) corpus. As a baseline approach, we trained task specific Statistical Language Models (SLM) and fine-tuned state-of-the-art Generalized Pre-training (GPT) Language Model to re-rank the n-best ASR hypotheses, followed by a model to identify the dialog act and slots. i) We further trained ranker models using GPT and Hierarchical CNN-RNN models with discriminatory losses to detect the best output given n-best hypotheses. We extended these ranker models to first select the best ASR output and then identify the dialogue act and slots in an end to end fashion. ii) We also proposed a novel joint ASR error correction and LU model, a word confusion pointer network (WCN-Ptr) with multihead self attention on top, which consumes the word confusions populated from the n-best. We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
We present the first complete attempt at concurrently training conversational agents that communicate only via self-generated language. Using DSTC2 as seed data, we trained natural language understanding (NLU) and generation (NLG) networks for each agent and let the agents interact online. We model the interaction as a stochastic collaborative game where each agent (player) has a role ("assistant", "tourist", "eater", etc.) and their own objectives, and can only interact via natural language they generate. Each agent, therefore, needs to learn to operate optimally in an environment with multiple sources of uncertainty (its own NLU and NLG, the other agent's NLU, Policy, and NLG). In our evaluation, we show that the stochastic-game agents outperform deep learning based supervised baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.