Game theory and its quantum extension apply in numerous fields that affect people's social, political, and economical life. Physical limits imposed by the current technology used in computing architectures (e.g., circuit size) give rise to the need for novel mechanisms, such as quantum inspired computation. Elements from quantum computation and mechanics combined with game-theoretic aspects of computing could open new pathways towards the future technological era. This paper associates dominant strategies of repeated quantum games with quantum automata that recognize infinite periodic inputs. As a reference, we used the PQ-PENNY quantum game where the quantum strategy outplays the choice of pure or mixed strategy with probability 1 and therefore the associated quantum automaton accepts with probability 1. We also propose a novel game played on the evolution of an automaton, where players' actions and strategies are also associated with periodic quantum automata.
There exists a wealth of literature concerning families of increasing trees, particularly suitable for representing the evolution of either data structures in computer science, or probabilistic urns in mathematics, but are also adapted to model evolutionary trees in biology. The classical notion of increasing trees corresponds to labeled trees such that, along paths from the root to any leaf, node labels are strictly increasing; in addition nodes have distinct labels. In this paper we introduce new families of increasingly labeled trees relaxing the constraint of unicity of each label. Such models are especially useful to characterize processes evolving in discrete time whose nodes evolve simultaneously. In particular, we obtain growth processes for biology much more adequate than the previous increasing models. The families of monotonic trees we introduce are much more delicate to deal with, since they are not decomposable in the sense of Analytic Combinatorics. New tools are required to study the quantitative statistics of such families. In this paper, we first present a way to combinatorially specify such families through evolution processes, then, we study the tree enumerations.
The power and efficiency of particular quantum algorithms over classical ones has been proved. The rise of quantum computing and algorithms has highlighted the need for appropriate programming means and tools. Here, we present a brief overview of some techniques and a proposed methodology in writing quantum programs and designing languages. Our approach offers "user-friendly" features to ease the development of such programs. We also give indicative snippets in an untyped fragment of the Qumin language, describing well-known quantum algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.