Rapid technological advances in the domain of Wireless Power Transfer pave the way for novel methods for power management in systems of wireless devices, and recent research works have already started considering algorithmic solutions for tackling emerging problems. In this paper, we investigate the problem of efficient and balanced Wireless Power Transfer in Wireless Sensor Networks. We employ wireless chargers that replenish the energy of network nodes. We propose two protocols that configure the activity of the chargers. One protocol performs wireless charging focused on the charging efficiency, while the other aims at proper balance of the chargers' residual energy. We conduct detailed experiments using real devices and we validate the experimental results via larger scale simulations. We observe that, in both the experimental evaluation and the evaluation through detailed simulations, both protocols achieve their main goals. The Charging Oriented protocol achieves good charging efficiency throughout the experiment, while the Energy Balancing protocol achieves a uniform distribution of energy within the chargers.
Abstract. Research on emerging networking paradigms, such as Mobile Crowdsensing Systems, requires new types of experiments to be conducted and an increasing spectrum of devices to be supported by experimenting facilities. In this work, we present a service based architecture for IoT testbeds which (a) exposes the operations of a testbed as services by following the Testbed as a Service (TBaaS) paradigm; (b) enables diverse facilities to be federated in a scalable and standardized way and (c) enables the seamless integration of crowdsourced resources (e.g. smartphones and wearables) and their abstraction as regular IoT resources. The architecture enables an experimenter to access a diverse set of resources and orchestrate experiments via a common interface by hiding the underlying heterogeneity and complexity. This way, the field of IoT experimentation with real resources is further promoted and broadened to also address researchers from other fields and disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.