Argumentation and eXplainable Artificial Intelligence (XAI) are closely related, as in the recent years, Argumentation has been used for providing Explainability to AI. Argumentation can show step by step how an AI System reaches a decision; it can provide reasoning over uncertainty and can find solutions when conflicting information is faced. In this survey, we elaborate over the topics of Argumentation and XAI combined, by reviewing all the important methods and studies, as well as implementations that use Argumentation to provide Explainability in AI. More specifically, we show how Argumentation can enable Explainability for solving various types of problems in decision-making, justification of an opinion, and dialogues. Subsequently, we elaborate on how Argumentation can help in constructing explainable systems in various applications domains, such as in Medical Informatics, Law, the Semantic Web, Security, Robotics, and some general purpose systems. Finally, we present approaches that combine Machine Learning and Argumentation Theory, toward more interpretable predictive models.
In the field of domestic cognitive robotics, it is important to have a rich representation of knowledge about how household objects are related to each other and with respect to human actions. In this paper, we present a domain dependent knowledge retrieval framework for household environments which was constructed by extracting knowledge from the VirtualHome dataset (http://virtual-home.org). The framework provides knowledge about sequences of actions on how to perform human scaled tasks in a household environment, answers queries about household objects, and performs semantic matching between entities from the web knowledge graphs DBpedia, ConceptNet, and WordNet, with the ones existing in our knowledge graph. We offer a set of predefined SPARQL templates that directly address the ontology on which our knowledge retrieval framework is built, and querying capabilities through SPARQL. We evaluated our framework via two different user evaluations.
This paper presents a novel abstract argumentation framework, called Multi-Attack Argumentation Framework (MAAF), which supports different types of attacks. The introduction of types gives rise to a new family of non-standard semantics which can support applications that classical approaches cannot, while also allowing classical semantics as a special case. The main novelty of the proposed semantics is the discrimination among two different roles that attacks play, namely an attack as a generator of conflicts, and an attack as a means to defend an argument. These two roles have traditionally been considered together in the argumentation literature. Allowing some attack types to serve one of those roles only, gives rise to the different semantics presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.