Set similarity join is an important problem with many applications in data discovery, cleaning and integration. To increase robustness, fuzzy set similarity join calculates the similarity of two sets based on maximum weighted bipartite matching instead of set overlap. This allows pairs of elements, represented as sets or strings, to also match approximately rather than exactly, e.g., based on Jaccard similarity or edit distance. However, this significantly increases the verification cost, making even more important the need for efficient and effective filtering techniques to reduce the number of candidate pairs. The current state-of-the-art algorithm relies on similarity computations between pairs of elements to filter candidates. In this paper, we propose token-based instead of element-based filtering, showing that it is significantly more lightweight, while offering similar or even better pruning effectiveness. Moreover, we address the top- k variant of the problem, alleviating the need for a user-specified similarity threshold. We also propose early termination to reduce the cost of verification. Our experimental results on six real-world datasets show that our approach always outperforms the state of the art, being an order of magnitude faster on average.
We present SPHINX, a system for metapath-based entity exploration in Heterogeneous Information Networks (HINs). SPHINX allows users to define different views over a HIN based on both automatically selected and user-defined meta-paths. Then, entity ranking and similarity search can be performed over these views to find and explore entities of interest, taking also into account any spatial or temporal properties of entities. A Web-based user interface is provided to facilitate users in performing the various functionalities supported by the system, including metapath-based view definition, index construction, search parameters specification, and visual comparison of the results.
Many recent works on Entity Resolution (ER) leverage Deep Learning techniques involving language models to improve effectiveness. This is applied to both main steps of ER, i.e., blocking and matching. Several pre-trained embeddings have been tested, with the most popular ones being fastText and variants of the BERT model. However, there is no detailed analysis of their pros and cons. To cover this gap, we perform a thorough experimental analysis of 12 popular language models over 17 established benchmark datasets. First, we assess their vectorization overhead for converting all input entities into dense embeddings vectors. Second, we investigate their blocking performance, performing a detailed scalability analysis, and comparing them with the state-of-the-art deep learning-based blocking method. Third, we conclude with their relative performance for both supervised and unsupervised matching. Our experimental results provide novel insights into the strengths and weaknesses of the main language models, facilitating researchers and practitioners to select the most suitable ones in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.