Modern datacenter networks provide very high capacity via redundant Clos topologies and low switch latency, but transport protocols rarely deliver matching performance. We present NDP, a novel datacenter transport architecture that achieves near-optimal completion times for short transfers and high flow throughput in a wide range of scenarios, including incast. NDP switch buffers are very shallow and when they fill the switches trim packets to headers and priority forward the headers. This gives receivers a full view of instantaneous demand from all senders, and is the basis for our novel, high-performance, multipath-aware transport protocol that can deal gracefully with massive incast events and prioritize traffic from different senders on RTT timescales. We implemented NDP in Linux hosts with DPDK, in a software switch, in a NetFPGA-based hardware switch, and in P4. We evaluate NDP's performance in our implementations and in large-scale simulations, simultaneously demonstrating support for very low-latency and high throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.