The manufacturing industry is continuously researching and developing strategies and solutions to increase product quality and to decrease production time and costs. The approach is always targeting more automated, traceable, and supervised production, minimizing the impact of the human factor. In the automotive industry, the Electronic Control Unit (ECU) manufacturing ends with complex testing, the End-of-Line (EoL) products being afterwards sent to client companies. This paper proposes an image-processing-based low-cost fault detection (IP-LC-FD) solution for the EoL ECUs, aiming for high-quality and fast detection. The IP-LC-FD solution approaches the problem of determining, on the manufacturing line, the correct mounting of the pins in the locations of each connector of the ECU module, respectively, other defects as missing or extra pins, damaged clips, or surface cracks. The IP-LC-FD system is a hardware–software structure, based on Raspberry Pi microcomputers, Pi cameras, respectively, Python and OpenCV environments. This paper presents the two main stages of the research, the experimental model, and the prototype. The rapid integration into the production line represented an important goal, meaning the accomplishment of the specific hard acceptance requirements regarding both performance and functionality. The solution was implemented and tested as an experimental model and prototype in a real industrial environment, proving excellent results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.