Adaptive system of supplying lubricant to the internal combustion engine E P Barylnikova, A T Kulakov and O A Kulakov -Particular mechanism for continuously varying the compression ratio for an internal combustion engine S Raiu, R Ctlinoiu, V Alexa et al. Abstract. The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.
The paper focuses on the development of lithium-ion battery cathode based on lithium iron phosphate (LiFePO4). Li-ion battery cathodes were manufactured using the new Battery R&D Production Line from ROM-EST Centre, the first and only facility in Romania, capable of fabricating the industry standard 18650 lithium-ion cells, customized pouch cells and CR2032 cells. The cathode configuration contains acetylene black (AB), LiFePO4, polyvinylidene fluoride (PVdF) as binder and N-Methyl-2-pyrrolidone (NMP) as solvent. X-ray diffraction measurements and SEM-EDS analysis were conducted to obtain structural and morphological information for the as-prepared electrodes.
The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.
This paper addresses the possibility of using an electric longboard in daily travel. A conventional longboard was transformed into an electric one and tested in ICSI Rm. Valcea labs. A series of tests were performed both at the laboratory level and, under normal running conditions, outdoors. Nevertheless, two possible scenarios have been taken into consideration. First, when the electric longboard is running on a flat road with a cruise speed, while the second scenario considered was that of climbing a hill with a 10% slope. The results confirmed the expectations and showed that a full charge of the batteries allows a trip over a distance of almost 50 km on a flat route having a consumption of about 10 Wh/km. However, there are some things to keep in mind when making travel distance predictions. The quality and the profile of the road, the weight of the rider, the rider position, all of these are factors which can significantly influence the predictions regarding the travel distance. Moreover, if the optimization is taken into account, several adjustments can be done in choosing the size and wheel model, whether or not to equip the skateboard with suspensions as well as a compromise between power and energy densities when choosing battery type is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.