Abstract-Navigation is one of the fundamental tasks for a mobile robot. The majority of path planning approaches has been designed to entirely solve the given problem from scratch given the current and goal configurations of the robot. Although these approaches yield highly efficient plans, the computed policies typically do not transfer to other, similar tasks. We propose to learn relational decision trees as abstract navigation strategies from example paths. Relational abstraction has several interesting and important properties. First, it allows a mobile robot to generalize navigation plans from specific examples provided by users or exploration. Second, the navigation policy learned in one environment can be transferred to unknown environments. In several experiments with real robots in a real environment and in simulated runs, we demonstrate the usefulness of our approach.
Autonomous agents that act in the real world utilizing sensory input greatly rely on the ability to plan their actions and to transfer these skills across tasks. The majority of path-planning approaches for mobile robots, however, solve the current navigation problem from scratch given the current and goal configuration of the robot. Consequently, these approaches yield highly efficient plans for the specific situation, but the computed policies typically do not transfer to other, similar tasks. In this paper, we propose to apply techniques from statistical relational learning to the pathplanning problem. More precisely, we propose to learn relational decision trees as abstract navigation strategies from example paths. Relational abstraction has several interesting and important properties. First, it allows a mobile robot to imitate navigation behavior shown by users or by optimal policies. Second, it yields comprehensible models of behavior. Finally, a navigation policy learned in one environment naturally transfers to unknown environments. In several experiments with real robots and in simulated runs, we demonstrate that our approach yields efficient navigation plans. We show that our system is robust against observation noise and can outperform hand-crafted policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.