Summary The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low molecular weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was non-toxic and potently suppressed DLBCL tumors in vivo. The compound also killed primary DLBCLs from human patients.
The transcriptional corepressors BCOR, SMRT, and NCoR are known to bind competitively to the BCL6 BTB domain despite the fact that BCOR has no detectable sequence similarity to the other two corepressors. We have identified a 17 residue motif from BCOR that binds directly to the BCL6 BTB domain and determined the crystal structure of the complex to a resolution of 2.6 A. Remarkably, the BCOR BCL6 binding domain (BCOR(BBD)) peptide binds in the same BCL6 binding site as the SMRT(BBD) peptide despite the lack of any significant sequence similarity between the two peptides. Mutations of critical BCOR(BBD) residues cause the disruption of the BCL6 corepression activities of BCOR, and a BCOR(BBD) peptide blocks BCL6-mediated transcriptional repression and kills lymphoma cells.
contributed equally to this workThe protein FinO represses F-plasmid conjugative transfer by facilitating interactions between the mRNA of the major F-plasmid transcriptional activator, TraJ, and an antisense RNA, FinP. FinO is known to bind stem±loop structures in both FinP and traJ RNAs; however, the mechanism by which FinO facilitates sense±antisense pairing is poorly understood. Here we show that FinO acts as an RNA chaperone to promote strand exchange and duplexing between minimal RNA targets derived from FinP. This strongly suggests that FinO may function to destabilize internal secondary structures within FinP and traJ RNAs that would otherwise act as a kinetic trap to sense±anti-sense pairing. The energy for FinO-catalyzed basepair destabilization does not arise from ATP hydrolysis but appears to be supplied directly from FinO RNA binding free energy. An analysis of the activities of mutants that are speci®cally de®cient in strand exchange but not RNA-binding activity demonstrates that strand exchange is essential to the ability of FinO to mediate sense±antisense RNA recognition, and that this function also plays a role in repression of conjugation in vivo.
The conjugative transfer of F-plasmids is repressed by a two-component system, which consists of the antisense RNA FinP and the protein FinO. FinO binds FinP, protecting it from endonucleolytic degradation and facilitating duplex formation between FinP and its complementary RNA. Here we present the results of site-specific protein-RNA cross-linking and gel-based fluorescence resonance energy transfer (gelFRET) experiments used to probe the structure of a complex of FinO bound to an RNA target consisting of a duplex with 5' and 3' single-stranded tails. The crosslinking experiments reveal that an extensive, largely positively charged surface on FinO contacts RNA. The gelFRET measurements indicate that the 5' single-stranded tail of the RNA is in closer contact with much of the protein than the distal, blunt end of the RNA duplex. These data suggest that significant conformational adjustments in the protein and/or the RNA accompany complex formation.
Conjugative transfer of F-like plasmids in Escherichia coli is repressed by a plasmid-encoded protein, FinO. FinO blocks the translation of TraJ, a positive activator of transcription of genes required for conjugation. FinO binds a traJ antisense RNA, FinP, thereby protecting it from degradation, and catalyzes FinP-traJ mRNA hybridization. Interactions between these two RNAs are predicted to block the traJ ribosomal binding site. In this paper, we use limited proteolysis, circular dichroism spectroscopy, and an electrophoretic mobility shift assay to map the regions within FinO that are required for interactions with RNA. Our results show that FinO is largely helical, binds to its highest affinity binding site within FinP as a monomer, and contains two distinct RNA binding regions, one of which is localized between residues 26 and 61, and a second which is localized between residues 62 and 186.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.