The paper aims to study the applicability and limitations of the solution resulting from a design process for an intelligent system supporting people with special needs who are not physically able to control a wheelchair using classical systems. The intelligent system uses information from smart sensors and offers a control system that replaces the use of a joystick. The necessary movements of the chair in the environment can be determined by an intelligent vision system analyzing the direction of the patient’s gaze and point of view, as well as the actions of the head. In this approach, an important task is to detect the destination target in the 3D workspace. This solution has been evaluated, outdoor and indoor, under different lighting conditions. In order to design the intelligent wheelchair, and because sometimes people with special needs also have specific problems with their optical system (e.g., strabismus, Nystagmus) the system was tested on different subjects, some of them wearing eyeglasses. During the design process of the intelligent system, all the tests involving human subjects were performed in accordance with specific rules of medical security and ethics. In this sense, the process was supervised by a company specialized in health activities that involve people with special needs. The main results and findings are as follows: validation of the proposed solution for all indoor lightning conditions; methodology to create personal profiles, used to improve the HMI efficiency and to adapt it to each subject needs; a primary evaluation and validation for the use of personal profiles in real life, indoor conditions. The conclusion is that the proposed solution can be used for persons who are not physically able to control a wheelchair using classical systems, having with minor vision deficiencies or major vision impairment affecting one of the eyes.
This paper describes the implementation of a solution for detecting the machining defects from an engine block, in the piston chamber. The solution was developed for an automotive manufacturer and the main goal of the implementation is the replacement of the visual inspection performed by a human operator with a computer vision application. We started by exploring different machine vision applications used in the manufacturing environment for several types of operations, and how machine learning is being used in robotic industrial applications. The solution implementation is re-using hardware that is already available at the manufacturing plant and decommissioned from another system. The re-used components are the cameras, the IO (Input/Output) Ethernet module, sensors, cables, and other accessories. The hardware will be used in the acquisition of the images, and for processing, a new system will be implemented with a human–machine interface, user controls, and communication with the main production line. Main results and conclusions highlight the efficiency of the CCD (charged-coupled device) sensors in the manufacturing environment and the robustness of the machine learning algorithms (convolutional neural networks) implemented in computer vision applications (thresholding and regions of interest).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.