Often the best performing supervised learning models are ensembles of hundreds or thousands of base-level classifiers. Unfortunately, the space required to store this many classifiers, and the time required to execute them at run-time, prohibits their use in applications where test sets are large (e.g. Google), where storage space is at a premium (e.g. PDAs), and where computational power is limited (e.g. hearing aids). We present a method for "compressing" large, complex ensembles into smaller, faster models, usually without significant loss in performance.
A number of supervised learning methods have been introduced in the last decade. Unfortunately, the last comprehensive empirical evaluation of supervised learning was the Statlog Project in the early 90's. We present a large-scale empirical comparison between ten supervised learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We also examine the effect that calibrating the models via Platt Scaling and Isotonic Regression has on their performance. An important aspect of our study is the use of a variety of performance criteria to evaluate the learning methods.
We study on-line decision problems where the set of actions that are available to the decision algorithm varies over time. With a few notable exceptions, such problems remained largely unaddressed in the literature, despite their applicability to a large number of practical problems. Departing from previous work on this "Sleeping Experts" problem, we compare algorithms against the payoff obtained by the best ordering of the actions, which is a natural benchmark for this type of problem. We study both the full-information (best expert) and partial-information (multi-armed bandit) settings and consider both stochastic and adversarial rewards models. For all settings we give algorithms achieving (almost) information-theoretically optimal regret bounds (up to a constant or a sub-logarithmic factor) with respect to the best-ordering benchmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.