Although both somatostatin receptor subtype 2 (SSTR2) and SSTR5 messenger ribonucleic acid (mRNA) are consistently expressed in GH-secreting adenomas, SSTR2 has been believed to be the key modulator of somatostatin-mediated inhibition of GH release. The somatostatin agonists currently in clinical use, octreotide and lanreotide, are directed mainly to SSTR2 (IC(50) 12- to 18-fold higher than for SSTR5). Recently, however, it was demonstrated that an SSTR5 preferential agonist, BIM-23268, not only suppressed PRL release from prolactinomas and mixed GH-PRL adenomas, but also inhibited GH release in about half of GH adenomas. In addition, the SSTR5-preferring analog showed a slight additive effect when used in combination with SSTR2 preferential drugs at submaximal concentrations in octreotide partially sensitive adenomas. In the present study we quantified SSTR2 and SSTR5 mRNA expression and the GH-suppressive effects of somatostatin-14; octreotide; a SSTR2-preferential compound, BIM-23197; a SSTR5-preferential compound, BIM-23268; and a new SSTR2- and SSTR5-bispecific compound, BIM-23244, in GH-secreting tumors classified as either full responders to octreotide (n = 5) or partially sensitive to octreotide (n = 5). The octreotide-sensitive GH secretory adenomas presented with a high level of both SSTR2 and SSTR5 mRNA expression [222 +/- 61 and 327 +/- 136 pg/pg glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively]. In these tumors the suppression of GH release was similarly achieved at picomolar ranges by octreotide, BIM-23197, and BIM-23244 (EC(50) = 25 +/- 15, 3 +/- 2, and 3 +/- 3 pmol/L, respectively). The compounds preferential for only SSTR5 were unable to inhibit GH release in such tumors. Among the octreotide partially responsive tumors, SSTR2 mRNA expression was 9-fold lower than in the octreotide-sensitive tumors (25 +/- 12 vs. 222 +/- 61 pg/pg GAPDH; P < 0.015), whereas SSTR5 mRNA expression was approximately 7-fold higher than in the octreotide-sensitive tumors (2271 +/- 1197 pg/pg GAPDH). In these octreotide partially responsive tumors, the SSTR5-preferential compound, BIM-23268, and the SSTR2- and SSTR5-bispecific compound, BIM-23244, were quite effective in suppressing GH secretion (EC(50) = 25 +/- 13 and 50 +/- 31 pmol/L, respectively). Similarly, BIM-23244, was able to suppress by 51 +/- 5% PRL release from five mixed GH- and PRL-secreting adenomas. These data indicate that due to heterogeneous expression of SSTR2 and SSTR5 receptor subtypes, in GH-secreting tumors, a bispecific analog, such as BIM-23244, that can activate both receptors could achieve better control of GH hypersecretion in a larger number of acromegalic patients.
In acromegaly, the combination of somatostatin (SS) and dopamine (DA) agonists has been shown to enhance suppression of GH secretion. In the present study, a new chimeric molecule, BIM-23A387, which selectively binds to the SS subtype 2 receptor (sst(2); K(i) = 0.10 nM) and to the DA D2 receptor (D2DR; K(i) = 22.1 nM) was tested in cultures prepared from 11 human GH-secreting tumors for its ability to suppress GH and prolactin (PRL) secretion. The chimeric compound was compared with individual sst(2) and D2DR agonists of comparable activity at the individual receptors. All tumors expressed both sst(2) and D2DR mRNAs (0.8 +/- 0.2 and 4.7 +/- 0.7 copy/copy beta-glucuronidase mRNA, respectively). In cell cultures from seven octreotide-sensitive tumors, the maximal inhibition of GH release induced by the individual sst(2) and D2DR analogs and by BIM-23A387 was similar. However, the mean EC(50) for GH suppression by BIM-23A387 (0.2 pM) was 50 times lower than that of the individual sst(2) and D2DR analogs, either used individually or combined. Similar data were obtained in four tumors that were only partially responsive to octreotide. The inhibition of GH release by BIM-23A387 was only partially reversed by the D2R2 antagonist, sulpiride, or by the sst(2) antagonist, BIM-23454. Only when both antagonists were combined was the GH suppressive effect of BIM-23A387 totally reversed. Finally, BIM-23A387 produced a mean 73 +/- 6% inhibition of PRL in six mixed GH plus PRL tumors. These data demonstrate an enhanced potency of the chimeric molecule, BIM-23A387, in suppressing GH and PRL secretion from acromegalic tumors, which cannot be explained merely on the basis of binding affinity for SS and/or DA receptors.
Mutation of PROP1 gene remains the first to be looked for, and POU1F1 mutations should be sought in GH deficiency and TSH deficiency postpubertal population without extrapituitary malformations. Identification of gene defects allows early treatment of any deficit and prevention of their potentially fatal consequences. Genotyping appears highly beneficial at an individual and familial level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.