We consider the problem of imaging the conductivity from knowledge of one current and corresponding voltage on a part of the boundary of an inhomogeneous isotropic object and of the magnitude |J(x)| of the current density inside. The internal data are obtained from magnetic resonance measurements. The problem is reduced to a boundary value problem with partial data for the equation ∇ ⋅ |J(x)||∇u|−1∇u = 0. We show that equipotential surfaces are minimal surfaces in the conformal metric |J|2/(n−1)I. In two dimensions, we solve the Cauchy problem with partial data and show that the conductivity is uniquely determined in the region spanned by the characteristics originating from the part of the boundary where measurements are available. We formulate sufficient conditions on the Dirichlet data to guarantee the unique recovery of the conductivity throughout the domain. The proof of uniqueness is constructive and yields an efficient algorithm for conductivity imaging. The computational feasibility of this algorithm is demonstrated in numerical experiments.
We consider the problem of recovering the conductivity of an object from knowledge of the magnitude of one current density field in its interior. A known voltage potential is assumed imposed at the boundary. We prove identifiability and propose an iterative reconstruction procedure. The computational feasibility of this procedure is demonstrated in some numerical experiments.
We consider the inverse conductivity problem of how to reconstruct an isotropic electric conductivity distribution in a conductive body from static electric measurements on the boundary of the body. An exact algorithm for the reconstruction of a conductivity in a planer domain from the associated Dirichlet-to-Neumann map is given. We assume that the conductivity has essentially one derivative, and hence we improve earlier reconstruction results. The method relies on a reduction of the conductivity equation to a first order system, to which the¯ -method of inverse scattering theory can be applied.
We establish results for the injectivity and injectivity modulo gauge of certain inverse source problems in transport on a simply connected domain with variable index of refraction inducing a 'simple geometry'. The model given by radiative transfer involves a scattering kernel with finite harmonic content in the deviation angle. The results on injectivity are constructive, and they are connected to the explicit inversion (modulo kernel) of the attenuated X-ray transform on tensor fields on simple Riemannian surfaces. *
ABSTRACT. We present new necessary and sufficient conditions for a function on ∂Ω×S 1 to be in the range of the attenuated Radon transform of a sufficiently smooth function support in the convex set Ω ⊂ R 2 . The approach is based on an explicit Hilbert transform associated with traces of the boundary of A-analytic functions in the sense of Bukhgeim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.