When shear cracking occurs in existing reinforced concrete deep members, engineers are faced with the challenge of determining the safety of the members. This paper presents a crack‐based assessment approach that utilizes the Two‐Parameter Kinematic Theory (2PKT) as a framework for the assessment of lightly reinforced concrete deep beams. The paper presents three assessment approaches with progressively increasing levels of approximation (LoAs). The first level of approximation (LoA I) involves using the 2PKT in a predictive manner for situations where the crack shapes are unknown, LoA II improves upon LoA I by incorporating more detailed modeling of the strain in the transverse reinforcement at the location of the critical cracks, and LoA III includes the details of LoA II but also uses the detailed crack geometry as an input in the assessment. Each of the LoAs is presented and compared with experimental data from a 4‐m deep beam test in the literature. The shear carrying mechanisms determined from the kinematic model are evaluated and compared across LoAs. Finally, the paper utilizes LoA III to study the size effect in shear for deep beams. The results quantify the influence of aggregate interlock on the size effect in shear critical deep beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.