Modern transactional processing systems need to be fast and scalable, but this means many such systems settled for weak consistency models. It is however possible to achieve all of strong consistency, high scalability and high performance, by using fine-grained partitions and light-weight concurrency control that avoids superfluous synchronization and other overheads such as lock management. Independent transactions are one such mechanism, that rely on good partitions and appropriately defined transactions. On the downside, it is not usually straightforward to determine optimal partitioning schemes, especially when dealing with non-trivial amounts of data. Our work attempts to solve this problem by automating the partitioning process, choosing the correct transactional primitive, and routing transactions appropriately.
Modern transactional processing systems need to be fast and scalable, but this means many such systems settled for weak consistency models. It is however possible to achieve all of strong consistency, high scalability and high performance, by using fine-grained partitions and light-weight concurrency control that avoids superfluous synchronization and other overheads such as lock management. Independent transactions are one such mechanism, that rely on good partitions and appropriately defined transactions. On the downside, it is not usually straightforward to determine optimal partitioning schemes, especially when dealing with non-trivial amounts of data. Our work attempts to solve this problem by automating the partitioning process, choosing the correct transactional primitive, and routing transactions appropriately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.