In this article, the yielding and plastic flow of a rapid-prototyped ABS compound was investigated for various plane stress states. The experimental procedures consisted of multiaxial tests performed on an Arcan device on specimens manufactured through photopolymerization. Numerical analyses were employed in order to determine the yield points for each stress state configuration. The results were used for the calibration of the Hosford yield criterion and flow potential. Numerical analyses performed on identical specimen models and test configurations yielded results that are in accordance with the experimental data.
This work investigates the critical plastic strain variation with stress triaxiality and the Lode angle parameter for an Acrylonitrile butadiene styrene (ABS)-based proprietary blend compound (commercial name VeroWhitePlus™ RGD835) manufactured through photopolymerization. Various triaxial states of stress and Lode angles were obtained with the help of notched flat specimens used in tensile loadings, notched round specimens used in compression (upsetting) tests and butterfly specimens used in Arcan tests. The tests were replicated using finite element analyses in order to evaluate the aforementioned parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.