BINOL-derived phosphoric acids have emerged during the last five years as powerful chiral Brønsted acid catalysts in many enantioselective processes. The most successful transformations carried out with chiral BINOL phosphates include C-C bond formation reactions. The recent advances have been reviewed in this article with a focus being placed on hydrocyanations, aldol-type, Mannich, Friedel-Crafts, aza-ene-type, Diels-Alder, as well as cascade and multi-component reactions.
The origin of the single chirality of most biomolecules is still a great puzzle. Carbohydrates could form in the formose reaction, which is proposed to be autocatalytic and contains aldol reaction steps. Based on our earlier observation of organoautocatalysis and spontaneous enantioenrichment in absence of deliberate chiral influences in the aldol reaction of acetone and p-nitrobenzaldehyde we suggest that a similar effect might be present also in the aldol reactions involved in gluconeogenesis. Herein we show that reactant precipitation observed in our earlier reported experiments does not affect the asymmetric autocatalysis in the aldol reaction we studied. We explain the phenomenon of spontaneous mirror symmetry breaking in such organocatalytic homogenous systems qualitatively by non-linear reaction network kinetics and classical transition state theory.
The enantioselective BINOL-phosphate catalyzed formation of a quaternary carbon center, bearing a N-atom has been achieved through the self-coupling reaction of enamides; the corresponding products have been isolated in up to >99% ee and their application for the synthesis of versatile synthetic building blocks-beta-aminoketones-has been demonstrated.
Keywords: Organocatalysis / Brønsted acids / Lewis acids / Hydrogen bonds / Binaphthyl derivativesIn recent years, binaphthyl compounds have found frequent applications in the design of various asymmetric organocatalysts, because binaphthyl structures are an attractive platform for organocatalyst development, particularly in light of their axial chirality characteristic. In this review, we discuss
A first organocatalytic enantioselective route was developed for the conversion of readily prepared and air stable aliphatic hydrazones to synthetically valuable alpha-hydrazinonitriles. This BINOL-phosphate catalyzed Strecker-type reaction (see scheme, Ar = p-NO(2)-Ph) provides a new practical and direct route to alpha-hydrazino acids of synthetic and biological importance. The actually active catalyst is proposed to be an in situ formed O-silylated BINOL-phosphate, thus shifting the nature of catalysis from Brønsted acid to Lewis acid organocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.