Chern-Simons gauge theories in 3 dimensions and the Poisson Sigma Model (PSM) in 2 dimensions are examples of the same theory, if their field equations are interpreted as morphisms of Lie algebroids and their symmetries (on-shell) as homotopies of such morphisms. We point out that the (off-shell) gauge symmetries of the PSM in the literature are not globally well-defined for non-parallelizable Poisson manifolds and propose a covariant definition of the off-shell gauge symmetries as left action of some finite-dimensional Lie algebroid.Our approach allows to avoid complications arising in the infinite dimensional super-geometry of the BV-and AKSZ-formalism. This preprint is a starting point in a series of papers meant to introduce Yang-Mills type gauge theories of Lie algebroids, which include and generalize the standard YM theory, gerbes, and the PSM.
A Q-manifold is a graded manifold endowed with a vector field of degree one squaring to zero. We consider the notion of a Q-bundle, that is, a fiber bundle in the category of Q-manifolds. To each homotopy class of "gauge fields" (sections in the category of graded manifolds) and each cohomology class of a certain subcomplex of forms on the fiber we associate a cohomology class on the base. Any principal bundle yielding canonically a Q-bundle, this construction generalizes Chern-Weil classes. Novel examples include cohomology classes that are locally the de Rham differential of the integrands of topological sigma models obtained by the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a characteristic 3-class in this manner. We also relate to equivariant cohomology and Lecomte's characteristic classes of exact sequences of Lie algebras.MSC classification: 58A50, 55R10, 57R20, 81T13, 81T45,
We introduce a new topological sigma model, whose fields are bundle maps from the tangent bundle of a 2-dimensional world-sheet to a Dirac subbundle of an exact Courant algebroid over a target manifold. It generalizes simultaneously the (twisted) Poisson sigma model as well as the G/G-WZW model. The equations of motion are satisfied, iff the corresponding classical field is a Lie algebroid morphism. The Dirac Sigma Model has an inherently topological part as well as a kinetic term which uses a metric on worldsheet and target. The latter contribution serves as a kind of regulator for the theory, while at least classically the gauge invariant content turns out to be independent of any additional structure. In the (twisted) Poisson case one may drop the kinetic term altogether, obtaining the WZ-Poisson sigma model; in general, however, it is compulsory for establishing the morphism property.
We show that the data needed for the method of the embedding tensor employed in gauging supergravity theories are precisely those of a Leibniz algebra (with one of its induced quotient Lie algebras embedded into a rigid symmetry Lie algebra that provides an additional "representation constraint"). Every Leibniz algebra gives rise to a Lie n-algebra in a canonical way (for every n ∈ N ∪ {∞}). It is the gauging of this L ∞ -algebra that explains the tensor hierarchy of the bosonic sector of gauged supergravity theories. The tower of p-from gauge fields corresponds to Lyndon words of the universal enveloping algebra of the free Lie algebra of an odd vector space in this construction. Truncation to some n yields the reduced field content needed in a concrete spacetime dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.