We develop a new estimator of the number of factors in the approximate factor models. The estimator works well even when the idiosyncratic terms are substantially correlated. It is based on the fact, established in the paper, that any finite number of the largest "idiosyncratic" eigenvalues of the sample covariance matrix cluster around a single point. In contrast, all the "systematic" eigenvalues, the number of which equals the number of factors, diverge to infinity. The estimator consistently separates the diverging eigenvalues from the cluster and counts the number of the separated eigenvalues. We consider a macroeconomic and a financial application. (c) 2010 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.
This paper studies the asymptotic power of tests of sphericity against
perturbations in a single unknown direction as both the dimensionality of the
data and the number of observations go to infinity. We establish the
convergence, under the null hypothesis and contiguous alternatives, of the log
ratio of the joint densities of the sample covariance eigenvalues to a Gaussian
process indexed by the norm of the perturbation. When the perturbation norm is
larger than the phase transition threshold studied in Baik, Ben Arous and Peche
[Ann. Probab. 33 (2005) 1643-1697] the limiting process is degenerate, and
discrimination between the null and the alternative is asymptotically certain.
When the norm is below the threshold, the limiting process is nondegenerate,
and the joint eigenvalue densities under the null and alternative hypotheses
are mutually contiguous. Using the asymptotic theory of statistical
experiments, we obtain asymptotic power envelopes and derive the asymptotic
power for various sphericity tests in the contiguity region. In particular, we
show that the asymptotic power of the Tracy-Widom-type tests is trivial (i.e.,
equals the asymptotic size), whereas that of the eigenvalue-based likelihood
ratio test is strictly larger than the size, and close to the power envelope.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1100 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
We use a micro-founded macroeconometric modeling framework to investigate the design of monetary policy when the central bank faces uncertainty about the true structure of the economy. We apply Bayesian methods to estimate the parameters of the baseline specification using postwar U.S. data, and then determine the policy under commitment that maximizes household welfare. We find that the performance of the optimal policy is closely matched by a simple operational rule that focuses solely on stabilizing nominal wage inflation. Furthermore, this simple wage stabilization rule is remarkably robust to uncertainty about the model parameters and to various assumptions regarding the nature and incidence of the innovations. However, the characteristics of optimal policy are very sensitive to the specification of the wage contracting mechanism, thereby highlighting the importance of additional research regarding the structure of labor markets and wage determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.