Blood cell analysis is one of the standard clinical tests. Despite the widespread use of exogenous markers for blood cell quantification, label-free optical methods are still of high demand due to their possibility for in vivo application and signal specific to the biochemical state of the cell provided by native fluorophores. Here we report the results of blood cell characterization using label-free fluorescence imaging techniques and flow-cytometry. Autofluorescence parameters of different cell types -white blood cells, red blood cells, erythrophagocytic cells -are assessed and analyzed in terms of molecular heterogeneity and possibilities of differentiation between different cell types in vitro and in vivo.
Endogenous autofluorescence of biological tissues is an important source of information for biomedical diagnostics. Despite the molecular complexity of biological tissues, the list of commonly known fluorophores is strictly limited. Still, the question of molecular sources of the red and near-infrared excited autofluorescence remains open. In this work we demonstrated that the oxidation products of organic components (lipids, proteins, amino acids, etc.) can serve as the molecular source of such red and near-infrared excited autofluorescence. Using model solutions and cell systems (human keratinocytes) under oxidative stress induced by UV irradiation we demonstrated that oxidation products can contribute significantly to the autofluorescence signal of biological systems in the entire visible range of the spectrum, even at the emission and excitation wavelengths higher than 650 nm. The obtained results suggest the principal possibility to explain the red fluorescence excitation in a large class of biosystems—aggregates of proteins and peptides, cells and tissues—by the impact of oxidation products, since oxidation products are inevitably presented in the tissue. The observed fluorescence signal with broad excitation originated from oxidation products may also lead to the alteration of metabolic imaging results and has to be taken into account.
Signaling pathways of red blood cells’ (RBCs) micromechanics regulation, which are responsible for maintaining microcirculation, constitute an important property of RBC physiology. Selective control over these processes may serve as an indispensable tool for correction of hemorheological disorders, which accompany a number of systemic diseases (diabetes mellitus I&II, arterial hypertension, malaria, etc.). Activation of certain pathways involving adenylyl cyclase may provide fast adaptive regulation of RBC deformability (RBC-D). However the specific molecular conditions of intracellular signal transduction in mediating RBC microrheological properties at adenylyl cyclase stimulation remain unclear. In this paper, we present the results of the
in vitro
study of the effects of different signaling pathways in adenylyl cyclase stimulation on RBC-D. We studied (1) the direct stimulation of adenylyl cyclase with forskolin; (2) non-selective adrenoreceptor stimulation with epinephrine; (3) β2-adrenoreceptor agonist metaproterenol; (4) membrane-permeable analog of cAMP (dibutyryl-cAMP). Using laser ektacytometry, we observed a concentration-dependent increase in RBC-D for all studied effectors. The EC50 values for each substance were estimated to be in the range of 1–100 μM depending on the shear stress applied to the RBC suspension. The results can serve as an evidence of adenylyl cyclase signaling cascade involvement in the regulation of RBC micromechanical properties presenting a complex molecular pathway for fast increase of microcirculation efficiency in case of corresponding physiologic metabolic demands of the organism, e.g., during stress or physical activity. Further studies of this molecular system will reveal new knowledge which may improve the quality of medical treatment of hemorheological disorders.
An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIββ3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets’ aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells’ aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.