In addition to ever-present thermal noise, various communication and sensor systems can contain significant amounts of interference with outlier (e.g. impulsive) characteristics. Such outlier noise can be efficiently mitigated in real-time using intermittently nonlinear filters. Depending on the noise nature and composition, improvements in the quality of the signal of interest will vary from "no harm" to substantial. In this paper, we explain in detail why the underlying outlier nature of interference often remains obscured, discussing the many challenges and misconceptions associated with state-of-art analog and/or digital nonlinear mitigation techniques, especially when addressing complex practical interference scenarios. We then focus on the methodology and tools for real-time outlier noise mitigation, demonstrating how the "excess band" observation of outlier noise enables its efficient in-band mitigation. We introduce the basic real-time nonlinear components that are used for outlier noise filtering, and provide examples of their implementation. We further describe complementary nonlinear filtering arrangements for wide-and narrow-band outlier noise reduction, providing several illustrations of their performance and the effect on channel capacity. Finally, we outline "effectively analog" digital implementations of these filtering structures, discuss their broader applications, and comment on the ongoing development of the platform for their demonstration and testing.Index Terms-Analog filter, digital filter, electromagnetic interference (EMI), impulsive noise, intermittently nonlinear filter, man-made interference, non-Gaussian noise, nonlinear signal processing, outlier noise, technogenic interference.
Abstract-Asynchronous and cyclostationary impulsive noise can severely impact the bit-error-rate (BER) of OFDM-based powerline communication systems. In this paper, we analyze an adaptive nonlinear analog front end filter that mitigates various types of impulsive noise without detrimental effects such as self-interference and out-of-band power leakage caused by other nonlinear approaches like clipping and blanking. Our proposed Adaptive Nonlinear Differential Limiter (ANDL) is constructed from a linear analog filter by applying a feedbackbased nonlinearity, controlled by a single resolution parameter. We present a simple practical method to find the value of this resolution parameter that ensures the mitigation of impulsive without impacting the desired OFDM signal. Unlike many prior approaches for impulsive noise mitigation that assume a statistical noise model, ANDL is blind to the exact nature of the noise distribution, and is designed to be fully compatible with existing linear front end filters. We demonstrate the potency of ANDL by simulating the OFDM-based narrowband PLC compliant with the IEEE standards. We show that the proposed ANDL outperforms other approaches in reducing the BER in impulsive noise environments.Index Terms-Impulsive noise, analog nonlinear filter, adaptive nonlinear differential limiter (ANDL), orthogonal frequencydivision multiplexing (OFDM), powerline communication (PLC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.