The aim of this work was to study the adsorption of indium from aqueous solutions on modified highly dispersed aluminosilicates for the recovery of indium from technological solutions. The adsorption isotherms of indium, iron and zinc from multi component solutions on modified by di(2-ethylhexyl) phosphoric acid montmorillonite were obtained. It was shown that adsorption processes can be reliably described by models of Langmuir and Freundlich (R2 = 0.96–0.99). The shape of the isotherms is determined both by the surface properties of the sorbent and forms of presence of metal ions in aqueous solutions. The highest value of Langmuir constant Kads = 422.65 for reagent "Metоsol" was obtained for ions of indium, which indicates the preferential affinity of the sorbing mineral to this element, since the corresponding figures for the ions Fe2+ (1.09) and Zn2+ (0.78) are close to unity. At sorption of metal ions from model solution in the range of acidity of 1-20 g/dm3 of H2SO4 the extraction of indium remains unchanged at ~70 %, and iron – is reduced from 39 to 15% of the initial content. With the further increase of acidity to 100 g/dm3 of H2SO4, the recovery of indium is reduced to 40 %; iron down to 14 %. In the examined range of concentration of sulfuric acid the extraction of zinc is from 6.0 to 7.5 percent. The value of the static exchange capacity for the studied metals are mmol/g: 0.39–0.23 of indium; 0.11–0.04 of iron(III); 0.05–0.04 of zinc. A rank of affinity of reagent "Metоsol" to extract the metal ions from solution with pre-reduced iron(III) was In3+ > Fe2+ > Zn2+ which determines the feasibility of its use for the selective adsorption of indium from the complex composition of technological solutions of zinc production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.