Quantum mechanics is formulated as a geometric theory on a Hilbert manifold. Images of charts on the manifold are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations in this setting, also called functional tensor equations, describe families of functional equations on various Hilbert spaces of functions. The principle of functional relativity is introduced which states that quantum theory is indeed a functional tensor theory, i.e., it can be described by functional tensor equations. The main equations of quantum theory are shown to be compatible with the principle of functional relativity. By accepting the principle as a hypothesis, we then explain the origin of physical dimensions, provide a geometric interpretation of Planck's constant, and find a simple interpretation of the two-slit experiment and the process of measurement.
Isomorphisms of separable Hilbert spaces are analogous to isomorphisms of n-dimensional vector spaces. However, while n-dimensional spaces in applications are always realized as the Euclidean space Rn, Hilbert spaces admit various useful realizations as spaces of functions. In the paper this simple observation is used to construct a fruitful formalism of local coordinates on Hilbert manifolds. Images of charts on manifolds in the formalism are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations then describe families of functional equations on various spaces of functions. The formalism itself and its applications in linear algebra, differential equations, and differential geometry are carefully analyzed
A geometric approach to quantum mechanics with unitary evolution and non-unitary collapse processes is developed. In this approach the Schrödinger evolution of a quantum system is a geodesic motion on the space of states of the system furnished with an appropriate Riemannian metric. The measuring device is modeled by a perturbation of the metric. The process of measurement is identified with a geodesic motion of state of the system in the perturbed metric. Under the assumption of random fluctuations of the perturbed metric, the Born rule for probabilities of collapse is derived. The approach is applied to a two-level quantum system to obtain a simple geometric interpretation of quantum commutators, the uncertainty principle and Planck's constant. In light of this, a lucid analysis of the double-slit experiment with collapse and an experiment on a pair of entangled particles is presented.
Abstract. The classical space-time structure is derived from the structure of an abstract infinite dimensional separable Hilbert space S. For this S is first realized as a Hilbert space H * of functions of abstract parameters. Such a realization is associated with the process of measuring position of macroscopic particles naturally occurring in the universe. The process of decoherence and collapse induced by the measurement is in return associated with the choice of a "decohered" submanifold M of realization H * . The submanifold M is then identified with the classical space-time. The mathematical formalism is developed which permits to recover the usual Riemannian geometry on space-time in terms of the Hilbert structure on S. The specific functional realizations of S are shown to produce space-times of different geometry and topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.