Within the framework of this study, the effect of nanoparticles of the essential trace element selenium stabilized by Polyvinylpirrolidone (PVP) C15 (8 ± 2 kDa) and ascorbic acid on the germination of barley seeds has been studied. Selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid, characterized by a spherical shape, monodisperse size distribution, and a diameter of about 70 ± 5 nm, were obtained by the chemical reduction method. The experiment compared the effect of selenium nanoparticles and selenous acid on seed germination. The positive effect of preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid on the length of roots and shoots, the number of roots, and the percentage of seed germination has been revealed. It was determined that the highest percentage of Hordeum vulgare L. culture seed germination was achieved using a preparation of selenium nanoparticles stabilized by PVP C15 (8 ± 2 kDa) and ascorbic acid at a concentration of of 4.65 µg/mL. Analysis of the results showed that selenium in the form of nanoparticles has an order of magnitude that is less toxic than in the form of selenous acid. The study of morphological and functional parameters during the germination of Hordeum vulgare L. seeds allowed us to conclude that selenium nanoparticles can be successfully used in agronomy and agriculture to provide plants with the essential microelement selenium, which is necessary for the normal growth and development of crops.
In the present study, a method for the synthesis of gelatin-stabilized copper oxide nanoparticles was developed. Synthesis was carried out by direct chemical precipitation. Copper sulfate, chloride, and acetate were used as precursors for the copper oxide synthesis. Gelatin was used as a stabilizer. It was found that the formation of monophase copper oxide II only occurred when copper acetate was used as a precursor. Our results showed that particles of the smallest diameter are formed in an aqueous medium (18 ± 6 nm), and those of th largest diameter—in an isobutanol medium (370 ± 131 nm). According to the photon correlation spectroscopy data, copper oxide nanoparticles synthesized in an aqueous medium were highly stable and had a monomodal size distribution with an average hydrodynamic radius of 61 nm. The study of the pH effect on the colloidal stability of copper oxide nanoparticles showed that the sample was stable in the pH range of 6.8 to 11.98. A possible mechanism for the pH influence on the stability of copper oxide nanoparticles is described. The effect of the ionic strength of the solution on the stability of the CuO nanoparticles sol was also studied, and the results showed that Ca2+ ions had the greatest effect on the sample stability. IR spectroscopy showed that the interaction of CuO nanoparticles with gelatin occurred through the hydroxyl group. It was found that CuO nanoparticles stabilized with gelatin have a fungicidal activity at concentration equivalent 2.5 · 10−3 mol/L and as a material for food nanopackaging can provide an increase in the shelf life of products on the example of strawberries and tomatoes. We investigated the possibility of using methylcellulose films modified with CuO nanoparticles for packaging and storage of hard cheese “Holland”. The distribution of CuO nanoparticles in the methylcellulose film was uniform. We found that methylcellulose films modified with CuO nanoparticles inhibited the growth and development of QMAFAM, coliforms, yeast and mold in experimental cheese sa mples. Our research has shown that during the cheese storage in thermostat at 35 ± 1 °C for 7 days, CuO nanoparticles migrated to the product from the film. Nevertheless, it is worth noting that the maximum change in the concentration of copper in the experimental samples was only 0.12 µg/mg, which is not a toxic concentration. In general, the small value of migration of CuO nanoparticles confirms the high stability of the developed preparation. Our results indicated that the CuO nanoparticles stabilized with gelatin have a high potential for use in food packaging – both as an independent nanofilm and as part of other packaging materials.
In this work, we obtained silver nanoparticles stabilized with polyvinylpyrrolidone, ranging in size from 70 to 110 nm, which exhibits good crystallinity and anisotropic structure. For the first time, we studied the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra. Our results showed that at molar ratios of Ag:Н2О2 = 1:1 and 1:5, dependences of changes in the intensity, position and half-width of the absorption band of the plasmon resonance are rectilinear. In vivo studies of silver nanoparticles have shown that silver nanoparticles belong to the toxicity class III (moderately hazardous substance) and to the third group according to the degree of accumulation. We established that silver nanoparticles and oxidized silver nanoparticles form a uniform layer on the surface of the suture material. We found that the use of the suture material with silver nanoparticles and oxidized silver nanoparticles does not cause allergic reactions in the organisms of laboratory animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.