Rock surfaces in natural systems are inhabited by multispecies communities of microorganisms. The biochemical activity of microorganisms and the patterns of microbial crystallization in these communities are mostly unexplored. Patterns of calcium carbonate and calcium oxalate crystallization induced by bacteria Bacillus subtilis and by B. subtilis together with Aspergillus niger on marble surface in vitro in liquid medium and in humidity chamber—were studied. Phase identification was supported by XRD, SEM, EDXS; metabolite composition was determined by GC–MS. It was found that the activity of B. subtilis–A. niger associations significantly differ from the activity of B. subtilis monocultures in the same trophic conditions. The phase composition and the morphology of the forming crystals are determined by the composition of the metabolites excreted by the microorganisms—particularly by the ratio of the concentrations of extracellular polymeric substances (EPS) and oxalic acid in the medium. The acidification activity of micromycetes may suppress the formation of bacterial EPS and prevent the formation of calcite. The present results can be used in the development of biotechnologies using microbial communities.
The composition of superficial deposits in urban environment and their importance in the development of the lithobiotic community of microorganisms has been investigated. Polyols, organic acids, mono- and disaccharides, as well as some amino acids, are the predominant low molecular weight organic components in superficial deposits, although the conditions on the stone surface are undoubtedly oligotrophic. Superficial deposits accumulate heavy metals, including Fe, Mn, Zn, Cu, Pb, and Cd, in surface sediments, among which the potentially toxic elements Zn, Cu, and Pb are accumulated in rather high concentrations. On model of Aspergillus niger as an example, it was shown micromycetes are resistant to heavy metals and retain their physiological activity when grown on this substrate. According to cultural studies, as well as metagenomic analysis, stress-resistant fungi and dark organotrophic bacteria are the main inhabitants of surface sediments. Probably, in the conditions of accumulation of superficial deposits on the stone, these organisms are the main inhabitants of the surface of the stone. With the development of more multi-species lithobiotic communities, they form the core of these communities. In the urban environment this type of primary colonization of the stone is likely realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.