Abstract-Local, rhythmic, subsarcolemmal Ca 2ϩ releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na ϩ -Ca 2ϩ exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of -adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca 2ϩ cycling and beating rate is also present in vivo, as the regulation of beating rate by local -adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca 2ϩ cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca 2ϩ balance and spontaneous SR Ca 2ϩ cycling, ie, phospholamban and L-type Ca 2ϩ channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na ϩ -Ca 2ϩ exchanger current and is crucial for both basal and reserve cardiac pacemaker function. R ecent studies have demonstrated that in sinoatrial (SA) nodal cells (SANC) generate local, rhythmic, subsarcolemmal Ca 2ϩ releases (LCRs) under basal conditions, ie, even in the absence of experimental Ca 2ϩ loading or stimulation of -adrenergic receptors (-ARs). [1][2][3] In rabbit SANC, spontaneous, rhythmic LCRs occur during the late diastolic depolarization and activate Na ϩ -Ca 2ϩ exchanger (NCX) to generate an inward current that accelerates the depolarization rate, and, thus, LCRs are involved in control of spontaneous beating rate of SANC. 1 The mechanisms that permit SANC, but not ventricular myocytes, to generate rhythmic LCRs under basal conditions, however, have not been delineated.Spontaneous SR Ca 2ϩ release is facilitated by factors that increase the rate at which the SR can pump Ca 2ϩ , foremost among which are elevated cell Ca 2ϩ or elevated cAMP and its attendant protein kinase A (PKA)-dependent protein phosphorylation that results from intense -AR stimulation. Whereas the cytosolic Ca 2ϩ concentration does not appreciably differ in rabbit ventricular cells and SANC, 2,4 the cAMP level of the intact SA node is high, 5 and it has been suspected that the basal cAMP level within SANC is elevated. 6,7 The SA node, however, is highly innervated, and neither the basal cAMP le...
Heart rate variability (beat-to-beat changes in the RR interval) has attracted considerable attention over the last 30+ years (PubMed currently lists >17,000 publications). Clinically, a decrease in heart rate variability is correlated to higher morbidity and mortality in diverse conditions, from heart disease to foetal distress. It is usually attributed to fluctuation in cardiac autonomic nerve activity. We calculated heart rate variability parameters from a variety of cardiac preparations (including humans, living animals, Langendorff-perfused heart and single sinoatrial nodal cell) in diverse species, combining this with data from previously published papers. We show that regardless of conditions, there is a universal exponential decay-like relationship between heart rate variability and heart rate. Using two biophysical models, we develop a theory for this, and confirm that heart rate variability is primarily dependent on heart rate and cannot be used in any simple way to assess autonomic nerve activity to the heart. We suggest that the correlation between a change in heart rate variability and altered morbidity and mortality is substantially attributable to the concurrent change in heart rate. This calls for re-evaluation of the findings from many papers that have not adjusted properly or at all for heart rate differences when comparing heart rate variability in multiple circumstances.
Abstract-Localized, subsarcolemmal Ca 2ϩ release (LCR) via ryanodine receptors (RyRs) during diastolic depolarization of sinoatrial nodal cells augments the terminal depolarization rate. We determined whether LCRs in rabbit sinoatrial nodal cells require the concurrent membrane depolarization, or are intrinsically rhythmic, and whether rhythmicity is linked to the spontaneous cycle length. Confocal linescan images revealed persistent LCRs both in saponin-permeabilized cells and in spontaneously beating cells acutely voltage-clamped at the maximum diastolic potential. During the initial stage of voltage clamp, the LCR spatiotemporal characteristics did not differ from those in spontaneously beating cells, or in permeabilized cells bathed in 150 nmol/L Ca 2ϩ . The period of persistent rhythmic LCRs during voltage clamp was slightly less than the spontaneous cycle length before voltage clamp. In spontaneously beating cells, in both transient and steady states, LCR period was highly correlated with the spontaneous cycle length; and regardless of the cycle length, LCRs occurred predominantly at a constant time, ie, 80% to 90% of the cycle length. Numerical model simulations incorporating LCRs reproduce the experimental results. We conclude that diastolic LCRs reflect rhythmic intracellular Ca 2ϩ cycling that does not require the concomitant membrane depolarization, and that LCR periodicity is closely linked to the spontaneous cycle length. Thus, the biological clock of sinoatrial nodal pacemaker cells, like that of many other rhythmic functions occurring throughout nature, involves an intracellular Ca 2ϩ rhythm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.