Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from competing hydrogenolysis of aliphatic C-O bonds and hydrogenation of the arene. Here, we report hydrogenolyses of aromatic C-O bonds in alkyl aryl and diaryl ethers that form exclusively arenes and alcohols. This process is catalyzed by a soluble nickel carbene complex under just 1 bar of hydrogen at temperatures of 80 to 120°C; the relative reactivity of ether substrates scale as Ar-OAr>>Ar-OMe>ArCH(2)-OMe (Ar, Aryl; Me, Methyl). Hydrogenolysis of lignin model compounds highlights the potential of this approach for the conversion of refractory aryl ether biopolymers to hydrocarbons.
A heterogeneous nickel catalyst for the selective hydrogenolysis of aryl ethers to arenes and alcohols generated without an added dative ligand is described. The catalyst is formed in situ from the welldefined soluble nickel precursor Ni(COD) 2 or Ni-(CH 2 TMS) 2 (TMEDA) in the presence of a base additive, such as t BuONa. The catalyst selectively cleaves C Ar −O bonds in aryl ether models of lignin without hydrogenation of aromatic rings, and it operates at loadings down to 0.25 mol % at 1 bar of H 2 pressure. The selectivity of this catalyst for electronically varied aryl ethers differs from that of the homogeneous catalyst reported previously, implying that the two catalysts are distinct from each other.
We report a series of hydroarylations of unactivated olefins with trifluoromethyl-substituted arenes that occur with high selectivity for the linear product without directing groups on the arene. We also show that hydroarylations occur with internal, acyclic olefins to yield linear alkylarene products. Experimental mechanistic data provide evidence for reversible formation of an alkylnickel−aryl intermediate and rate-determining reductive elimination to form the carbon−carbon bond. Labeling studies show that formation of terminal alkylarenes from internal alkenes occurs by initial establishment of an equilibrating mixture of alkene isomers, followed by addition of the arene to the terminal alkene. Computational (DFT) studies imply that the aryl C−H bond transfers to a coordinated alkene without oxidative addition and support the conclusion from experiment that reductive elimination is rate-determining and forms the anti-Markovnikov product. The reactions are inverse order in α-olefin; thus the catalytic reaction occurs, in part, because isomerization creates a low concentration of the reactant α-olefin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.