We propose a novel approach to facies classification based on a supervised machine learning algorithm. This approach allows for the automatic facies classification on a field scale based on an ensemble of Decision Trees algorithm associated with gradient boosting. Major steps of the workflow include data integrity assessment, data scaling, identification and correction of gaps in data, log processing, feature engineering, training, testing, and tuning the hyperparameters on the validated set of data. At the ultimate stage of the workflow, the algorithm accepts a set of well logs as an input and produces a discrete facies type as an output. This method substantially increases the quality of the facies classification, that is key to further geological modelling and dynamic simulation that help reduce drastically the risk of incorrect well planning, fracturing and other operations, thus avoiding a huge negative financial impact. The novelty of approach is related to the selection of machine learning algorithms that are best fitting the dataset, combined with a workflow to enhance the dataset itself.
Authors made an overview of approach towards creation business decision support model. Authors underline requirements and evaluation methods for proposed model to be used in cybernetics and organization of production. Authors described domain problems and proposed interpretable model as a solution. Authors explored levels of the evaluation and chosen one that suits their problem. Authors also discuss business model influencing factors as local interpretability, severity of incompleteness, time constraints and level of user expertise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.