Revealing defects and inhomogeneities of physical and chemical properties beneath a surface or an interface with in-depth nanometric resolution plays a pivotal role for a high degree of reliability in nanomanufacturing processes and in materials science more generally. (1, 2) Nanoscale noncontact depth profiling of mechanical and optical properties of transparent sub-micrometric low-k material film exhibiting inhomogeneities is here achieved by picosecond acoustics interferometry. On the basis of the optical detection through the time-resolved Brillouin scattering of the propagation of a picosecond acoustic pulse, depth profiles of acoustical velocity and optical refractive index are measured simultaneously with spatial resolution of tens of nanometers. Furthermore, measuring the magnitude of this Brillouin signal provides an original method for depth profiling of photoelastic moduli. This development of a new opto-acoustical nanometrology paves the way for in-depth inspection and for subsurface nanoscale imaging of inorganic- and organic-based materials.
We generate in-plane magnetoelastic waves in nickel films using the all-optical transient grating technique. When performed on amorphous glass substrates, two dominant magnetoelastic excitations can be resonantly driven by the underlying elastic distortions, the Rayleigh surface acoustic wave and the surface skimming longitudinal wave. An applied field, oriented in the sample plane, selectively tunes the coupling between magnetic precession and one of the elastic waves, thus demonstrating selective excitation of coexisting, large-amplitude magnetoelastic waves. Analytical calculations based on the Green's function approach corroborate the generation of multiple surface acoustic transients with disparate decay dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.