DaNetQA, a new question-answering corpus, follows BoolQ [2] design: it comprises natural yes/no questions. Each question is paired with a paragraph from Wikipedia and an answer, derived from the paragraph. The task is to take both the question and a paragraph as input and come up with a yes/no answer, i.e. to produce a binary output. In this paper, we present a reproducible approach to DaNetQA creation and investigate transfer learning methods for task and language transferring. For task transferring we leverage three similar sentence modelling tasks: 1) a corpus of paraphrases, Paraphraser, 2) an NLI task, for which we use the Russian part of XNLI, 3) another question answering task, SberQUAD. For language transferring we use English to Russian translation together with multilingual language fine-tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.