-Condition monitoring is an important and challenging task actual for many areas of industry, medicine and economics. Nowadays it is necessary to provide on-line monitoring of the complex systems status, e.g. the steel production, in order to avoid faults, breakdowns or wrong diagnostics. In the present paper a novel machine learning method for the automated condition monitoring is presented. Neural Clouds (NC) is a novel data encapsulation method, which provides a confidence measure regarding classification of the complex system conditions. The presented adaptive algorithm requires only the data which corresponds to the normal system conditions, which is typically available. At the same time the fault related data acquisition is expensive and fault modeling is not always possible, especially in case one is dealing with steel production, power stations operation, human health condition or critical phenomena in financial markets. These real word applications are also presented in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.