In recent years, a number of methods have been developed to infer complex demographic histories, especially historical population size changes, from genomic sequence data. Coalescent Hidden Markov Models have proven to be particularly useful for this type of inference. Due to the Markovian structure of these models, an essential building block is the joint distribution of local genealogical trees, or statistics of these genealogies, at two neighboring loci in populations of variable size. Here, we present a novel method to compute the marginal and the joint distribution of the total length of the genealogical trees at two loci separated by at most one recombination event for samples of arbitrary size. To our knowledge, no method to compute these distributions has been presented in the literature to date. We show that they can be obtained from the solution of certain hyperbolic systems of partial differential equations. We present a numerical algorithm, based on the method of characteristics, that can be used to efficiently and accurately solve these systems and compute the marginal and the joint distributions. We demonstrate its utility to study properties of the joint distribution. Our flexible method can be straightforwardly extended to handle an arbitrary fixed number of recombination events, to include the distributions of other statistics of the genealogies as well, and can also be applied in structured populations.
Recent developments in big data and analytics research have produced an abundance of large data sets that are too big to be analyzed in their entirety, due to limits on computer memory or storage capacity. To address these issues, communication-free parallel Since our method estimates only marginal densities, there is no limitation on the number of model parameters analyzed. Our procedure is suitable for Bayesian models with unknown parameters with fixed dimension in continuous parameter spaces.3
We consider a variational scheme developed by S. Demoulini, D. M. A. Stuart and A. E. Tzavaras [Arch. Rat. Mech. Anal. 157 (2001)] that approximates the equations of three dimensional elastodynamics with polyconvex stored energy. We establish the convergence of the time-continuous interpolates constructed in the scheme to a solution of polyconvex elastodynamics before shock formation. The proof is based on a relative entropy estimation for the time-discrete approximants in an environment of L p -theory bounds, and provides an error estimate for the approximation before the formation of shocks.keywords: nonlinear elasticity, polyconvexity, variational approximation scheme.
Recent advances in big data and analytics research have provided a wealth of large data sets that are too big to be analyzed in their entirety, due to restrictions on computer memory or storage size. New Bayesian methods have been developed for data sets that are large only due to large sample sizes. These methods partition big data sets into subsets and perform independent Bayesian Markov chain Monte Carlo analyses on the subsets. The methods then combine the independent subset posterior samples to estimate a posterior density given the full data set. These approaches were shown to be effective for Bayesian models including logistic regression models, Gaussian mixture models and hierarchical models. Here, we introduce the R package parallelMCMCcombine which carries out four of these techniques for combining independent subset posterior samples. We illustrate each of the methods using a Bayesian logistic regression model for simulation data and a Bayesian Gamma model for real data; we also demonstrate features and capabilities of the R package. The package assumes the user has carried out the Bayesian analysis and has produced the independent subposterior samples outside of the package. The methods are primarily suited to models with unknown parameters of fixed dimension that exist in continuous parameter spaces. We envision this tool will allow researchers to explore the various methods for their specific applications and will assist future progress in this rapidly developing field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.