The goal of this work is to build a state-of-the-art English conversational telephone speech recognition system. We investigated several techniques to improve acoustic modeling, namely speaker-dependent bottleneck features, deep Bidirectional Long Short-Term Memory (BLSTM) recurrent neural networks, data augmentation and score fusion of DNN and BLSTM models. Training set consisted of the 300 hour Switchboard English speech corpus. We also examined the hypothesis rescoring using language models based on recurrent neural networks. The resulting system achieves a word error rate of 7.8% on the Switchboard part of the HUB5 2000 evaluation set which is the competitive result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.