Online tracking of users in support of behavioral advertising is widespread. Several researchers have proposed nontracking online advertising systems that go well beyond the requirements of the Do-Not-Track initiative launched by the US Federal Trace Commission (FTC). The primary goal of these systems is to allow for behaviorally targeted advertising without revealing user behavior (clickstreams) or user profiles to the ad network. Although these designs purport to be practical solutions, none of them adequately consider the role of the ad auctions, which today are central to the operation of online advertising systems. This paper looks at the problem of running auctions that leverage user profiles for ad ranking while keeping the user profile private. We define the problem, broadly explore the solution space, and discuss the pros and cons of these solutions. We analyze the performance of our solutions using data from Microsoft Bing advertising auctions. We conclude that, while none of our auctions are ideal in all respects, they are adequate and practical solutions.
There are a number of designs for an online advertising system that allow for behavioral targeting without revealing user online behavior or user interest profiles to the ad network. However, none of the proposed designs have been deployed in real-life settings. We present an effort to fill this gap by building and evaluating a fully functional prototype of a practical privacy-preserving ad system at a reasonably large scale. With more than 13K opted-in users, our system was in operation for over two months serving an average of 4800 active users daily. During the last month alone, we registered 790K ad views, 417 clicks, and even a small number of product purchases. In addition, our prototype is equipped with a differentially private data collection mechanism, which we used as the primary means for gathering experimental data. The data we collected show, for example, that our system obtained click-through rates comparable with those for Google display ads. In this paper, we describe our first-hand experience and lessons learned in running the first fully operational "private-by-design" behavioral advertising and analytics system.
Web-based enterprises process events generated by millions of users interacting with their websites. Rich statistical data distilled from combining such interactions in near realtime generates enormous business value. In this paper, we describe the architecture of Photon, a geographically distributed system for joining multiple continuously flowing streams of data in real-time with high scalability and low latency, where the streams may be unordered or delayed. The system fully tolerates infrastructure degradation and datacenter-level outages without any manual intervention. Photon guarantees that there will be no duplicates in the joined output (at-most-once semantics) at any point in time, that most joinable events will be present in the output in real-time (near-exact semantics), and exactly-once semantics eventually.Photon is deployed within Google Advertising System to join data streams such as web search queries and user clicks on advertisements. It produces joined logs that are used to derive key business metrics, including billing for advertisers. Our production deployment processes millions of events per minute at peak with an average end-to-end latency of less than 10 seconds. We also present challenges and solutions in maintaining large persistent state across geographically distant locations, and highlight the design principles that emerged from our experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.