Predicting the live weight of cattle helps us monitor the health of animals, conduct genetic selection, and determine the optimal timing of slaughter. On large farms, accurate and expensive industrial scales are used to measure live weight. However, a promising alternative is to estimate live weight using morphometric measurements of livestock and then apply regression equations relating such measurements to live weight. Manual measurements on animals using a tape measure are time-consuming and stressful for the animals. Therefore, computer vision technologies are now increasingly used for non-contact morphometric measurements. The paper proposes a new model for predicting live weight based on augmenting three-dimensional clouds in the form of flat projections and image regression with deep learning. It is shown that on real datasets, the accuracy of weight measurement using the proposed model reaches 91.6%. We also discuss the potential applicability of the proposed approach to animal husbandry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.