In this paper, we propose a new architecture and performance analysis for beam index modulation (BIM) wireless communication implemented with the aid of analog beamforming. The BIM concept is presented in order to extend and adapt the spatial modulation (SM) concept to sparse wireless communication channel environments. It is shown that when compared with the conventional beamforming and SM strategies, the BIM system can achieve higher spectrum efficiency in high signal to noise ratio (SNR) and non-line-of-sight (nLoS) sparse channel scenarios. Furthermore, different to the previous spatial scattering modulation (SSM) work the proposed BIM architectures have reduced hardware complexity, and, importantly, in some nLoS sparse channel conditions the BIM can also outperform the SSM. The above findings were further validated by some demonstrative experiments that were conducted at 10 GHz.
Context. Large field-of-view imaging and polarimetry instruments operating at millimetre and sub-millimetre wavelengths are fundamental tools to understand the role of magnetic fields in channelling filament material into prestellar cores, providing unique insight in the physics of galactic star-forming regions. Among other topics, at extra-galactic scales, polarisation observations of Active Galactic Nuclei (AGNs) will allow us to constrain the possible physical conditions of the emitting plasma from the jets and/or explore the physics of dust inside supernova remnants. The kilo-pixel New IRAM KIDs Array 2 (NIKA2) camera, installed today at the Institut de Radioastronomie Millimétrique (IRAM) 30-m telescope, represents one of the best tools available to astronomers to produce simultaneous intensity and polarimetry maps over large fields at 260 GHz (1.15 mm).
Aims. The polarisation measurement, in NIKA and NIKA2, is achieved by rapidly modulating the total incoming polarisation. In the end, this allows one to safely isolate the small science signal from the large, un-polarised, and strongly variable, atmospheric background.
Methods. The polarisation modulation is achieved by inserting a fast rotating half-wave plate (HWP) in the optical beam. In order to allow wide field-of-view observations, the plate has to be large, with a diameter of 250 mm. The modulation of the polarised signal at 12 Hz also requires the waveplate to be sufficiently light. In addition, this key optical element has to exhibit optimal electromagnetic characteristics in terms of transmission and differential phase-shift. For this purpose, three metamaterial HWPs have been developed using the mesh-filter technology. The knowledge acquired in developing the first two single-band HWPs was used to achieve the more challenging performance requirements of the last dual-band HWP. The first and the third waveplates met the requirements for both the NIKA and NIKA2 instruments.
Results. We first illustrate the design, the technical developments, the fabrication, and laboratory characterisation of the three mesh-HWPs. The deployment of two such elements in the NIKA and NIKA2 instruments at the 30-metre telescope is then described. We conclude with representative examples of astrophysical maps integrating polarimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.