Snow is a challenging natural phenomenon to visually simulate. While the graphics community has previously considered accumulation and rendering of snow, animation of snow dynamics has not been fully addressed. Additionally, existing techniques for solids and fluids have difficulty producing convincing snow results. Specifically, wet or dense snow that has both solid- and fluid-like properties is difficult to handle. Consequently, this paper presents a novel snow simulation method utilizing a user-controllable elasto-plastic constitutive model integrated with a hybrid Eulerian/Lagrangian Material Point Method. The method is continuum based and its hybrid nature allows us to use a regular Cartesian grid to automate treatment of self-collision and fracture. It also naturally allows us to derive a grid-based semi-implicit integration scheme that has conditioning independent of the number of Lagrangian particles. We demonstrate the power of our method with a variety of snow phenomena including complex character interactions.
Figure 1: APIC/PIC blends yield more energetic and more stable behavior than FLIP/PIC blends in a wine pour example. APIC/PIC blends are achieved analogously to FLIP/PIC in that it is a scaling of the particle affine matrices. c Disney. AbstractHybrid Lagrangian/Eulerian simulation is commonplace in computer graphics for fluids and other materials undergoing large deformation. In these methods, particles are used to resolve transport and topological change, while a background Eulerian grid is used for computing mechanical forces and collision responses. Particlein-Cell (PIC) techniques, particularly the Fluid Implicit Particle (FLIP) variants have become the norm in computer graphics calculations. While these approaches have proven very powerful, they do suffer from some well known limitations. The original PIC is stable, but highly dissipative, while FLIP, designed to remove this dissipation, is more noisy and at times, unstable. We present a novel technique designed to retain the stability of the original PIC, without suffering from the noise and instability of FLIP. Our primary observation is that the dissipation in the original PIC results from a loss of information when transferring between grid and particle representations. We prevent this loss of information by augmenting each particle with a locally affine, rather than locally constant, description of the velocity. We show that this not only stably removes the dissipation of PIC, but that it also allows for exact conservation of angular momentum across the transfers between particles and grid.
Figure 1: Lava solidifying into pāhoehoe forms complex and attractive shapes. The lava emits light according to the blackbody spectrum corresponding to the simulated temperature. c Disney. AbstractIn this paper, we introduce a novel material point method for heat transport, melting and solidifying materials. This brings a wider range of material behaviors into reach of the already versatile material point method. This is in contrast to best-of-breed fluid, solid or rigid body solvers that are difficult to adapt to a wide range of materials. Extending the material point method requires several contributions. We introduce a dilational/deviatoric splitting of the constitutive model and show that an implicit treatment of the Eulerian evolution of the dilational part can be used to simulate arbitrarily incompressible materials. Furthermore, we show that this treatment reduces to a parabolic equation for moderate compressibility and an elliptic, Chorin-style projection at the incompressible limit. Since projections are naturally done on marker and cell (MAC) grids, we devise a staggered grid MPM method. Lastly, to generate varying material parameters, we adapt a heat-equation solver to a material point framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.