SignificanceAnhydrobiosis is an ametabolic state found in several organisms that can survive extreme desiccation. It is of practical interest because its application to other systems might allow room temperature preservation of cells, tissues, or organs in the dry state. The insect Polypedilum vanderplanki is the most complex animal that can enter anhydrobiosis. Proteins responsible for desiccation tolerance in P. vanderplanki are relatively well studied, but little is known about mechanisms underlying their induction during desiccation. Here, we show that the heat shock transcription factor regulatory network was coopted during the evolution of P. vanderplanki to activate many known desiccation-protective genes, including genes encoding late embryogenesis abundant (LEA) proteins.
Long non-coding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes including human diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive of over 109,000 coding and non-coding genes, as described in the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human samples. In particular, we (a) identify tissue specific transcription profiles for distinct classes of coding and non-coding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel non-coding genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhancers lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other researchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.