Central sensitisation is a key mechanism of migraine; understanding its modulation by anti-migraine drugs is essential for rationalising treatment. We used an animal model of central trigeminal sensitisation to investigate neuronal responses to dural electrical stimulation as a putative electrophysiological marker of sensitisation and its modulation by ketorolac. In anaesthetised rats, responses of single convergent wide-dynamic range neurons of the spinal trigeminal nucleus to dural electrical simulation were recorded in parallel to their ongoing activity and responses to facial mechanical stimulation before and after a short-term dural application of an IS. Both ongoing activity and responses to dural electrical stimuli were enhanced by the inflammatory challenge, whereas neuronal thresholds to mechanical skin stimulation were reduced (p < .05, N = 12). Intravenous ketorolac (2 mg/kg, N = 6) reduced ongoing activity and responses to dural electrical stimulation, and increased mechanical thresholds versus vehicle controls (p < .05, N = 6). We conclude that neuronal responses to dural electrical stimulation can serve as a suitable marker which together with admitted electrophysiological signs can objectively detect central trigeminal sensitisation and its modulation by anti-migraine treatments in this preclinical model of migraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.